Тариэл Капанадзе

Никола Тесла

Изобретения, исследования и труды Николы Тесла





НАУЧНЫЕ И ТЕХНИЧЕСКИЕ СТАТЬИ

Статья 1: Явления переменных токов очень высокой частоты.
(The El. World, Febr. 21, 1891).

Журналы по электричеству становятся все более и более интересными. Каждый день наблюдаются новые факты и встают новые проблемы, овладевающие вниманием инженеров.
В последних номерах английских журналов, особенно в Electrician, было поднято несколько новых вопросов, которые привлекли к себе более чем просто обычное внимание.
Выступление Профессора Крукса оживило интерес к его красивым и искусно выполненным экспериментам, эффект, наблюдавшийся на электросетях Ферранти, побудил выразить свои мнения нескольких ведущих Английских электротехников, а М-р. Свинбурн указал на некоторые интересные моменты в связи с конденсаторами и возбуждением в динамо.
Собственные знания и опыт автора побудили его отважиться на некоторые замечания по этим и другим вопросам в надежде, что эти замечания дадут какую-нибудь полезную информацию читателю или наведут его на размышления.
Среди своих многочисленных экспериментов Профессор Крукс демонстрирует ряд опытов с трубками без внутренних электродов, и из его замечаний можно сделать вывод, что полученные с этими трубками результаты довольно необычны.
Если это так, то автор должен выразить свои сожаления о том, что Профессор Крукс, чья превосходная работа восхитила каждого исследователя, не воспользовался в своих экспериментах машиной переменного тока, сконструированной должным образом, а именно, такой, которая дает, скажем, 10,000—20,000 перемен тока в секунду.

Тогда его исследования этого сложного но пленительного предмета были бы [гораздо] полнее.
Конечно, это правда, что при использовании такой машины, подключенной к индукционной катушке, отличительные особенности электродов, что во многих экспериментах если и не необходимо, то желательно, теряются, и в большинстве случаев оба электрода ведут себя схожим образом.
Но , с другой стороны, экспериментатор получает возможность произвольно усиливать эффекты.
Когда используется вращающийся переключатель или коммутатор, достижимая частота переключений постоянного тока ограничена.
Когда коммутатор вращается быстрее, первичный ток- ослабевает, а если ток увеличивать, то искрение, которое нельзя полностью преодолеть конденсатором, портит прибор. Ни одного из этих ограничений нет, если применять машину переменного тока, потому что можно достичь любой желаемой частоты изменения в первичном токе.
Таким путем возможно получить чрезвычайно большую электродвижущую силу во вторичной цепи при относительно небольшом первичном токе, и помимо того, можно вполне полагаться на безупречную исправность работы прибора.
Попутно автор также отметит, что любой, кто будет пытаться сконструировать такую машину в первый раз, сможет потом написать целое сказание о своих мытарствах.
Само собой разумеется, он сначала начнет делать якорь с нужным количеством полярных выступов.
После чего получит удовлетворение от того, что создал прибор, который вполне подойдет для аккомпанемента в опере Вагнера.

Кроме того, он сможет по ходу дела овладеть добродетелью преобразования механической энергии в тепло почти что в совершенстве.
Если будет обращение полярности полюсов, то он будет получать тепло от машины; если обращения не будет, нагрев будет меньше, но и выхода почти не будет.
Он после этого откажется от железа в якоре, и попадет от Сциллы к Харибде. Он будет ожидать одной трудности, а сталкиваться с другой, но после нескольких попыток он сможет получить почти то, что хотел.
Среди большого числа экспериментов, которые можно провести с такой машиной, не последний интерес представляют опыты с индукционной катушкой высокого напряжения.
Характер разряда полностью меняется. Дуга устанавливается на гораздо больших расстояниях, и на нее столь легко влияет самый слабый поток воздуха, что часто она извивается самым причудливым образом.
Она обычно издает ритмический звук, свойственный дугам переменного тока, но любопытно, что этот звук можно слышать при числе перемен намного выше десяти тысяч в секунду, что многими считается [приблизительной] границей слышимости.
Катушка во многих отношениях ведет себя как статическая машина. Острия существенно уменьшают ее разрядный промежуток, потому что электричество свободно стекает с них, а от присоединенного к одной из клемм провода исходят потоки света, как если бы он был соединен с полюсом мощной машины Теплера.
Все эти явления возникают, безусловно, главным образом благодаря получаемой огромной разности потенциалов.
Вследствие самоиндукции катушки и высокой частоты ток незначителен, тогда как напряжения соответствующий рост есть.
Импульс тока определенной силы, начавшийся в такой катушке, продолжает течь не менее четырех десятитысячных секунды.
Поскольку это время больше, чем половина периода, то получается, что противоположная электродвижущая сила начинает действовать в то время, пока ток еще течет.
И как следствие этого, напряжение растет как давление в заполненной жидкостью трубе, которая быстро вибрирует относительно своей оси.

Ток настолько мал, что, по мнению и невольному опыту автора, разряд даже очень большой катушки не может причинить сколько- нибудь серьезного вреда, тогда как в случае, если та же самая катушка будет работать под током меньшей частоты, то, хотя электродвижущая сила и будет гораздо меньше, разряд ее будет несомненно весьма вредоносным.
Этот эффект, однако, лишь частично обусловлен высокой частотой. Опыт автора говорит о том, что чем больше частота, тем больше количество электрической энергии, которое может пройти через тело человека без серьезного дискомфорта; откуда представляется необходимым вывод, что человеческие ткани действуют как конденсаторы.

Экспериментатор не вполне готов к поведению катушки, подсоединенной к Лейденской банке. Он, конечно, ожидает, что из-за высокой частоты емкость банки должна быть маленькой.
Поэтому он берет очень маленькую банку, размером примерно с небольшой стакан для вина, но обнаруживает, что даже с такой банкой катушка практически оказывается замкнутой накоротко.
Тогда он уменьшает емкость, пока не доходит приблизительно до емкости двух сфер, скажем, десяти сантиметров в диаметре и на расстоянии два— четыре сантиметра.
Тогда разряд принимает форму зазубренной ленты, которая выглядит в точности как последовательность искр, наблюдаемая в быстро вращающемся зеркале; зубцы, конечно, соответствуют разрядам конденсатора.
В этом случае экспериментатор может наблюдать странный эффект. Разряд начинается в ближайших [друг к другу] точках, постепенно нарастает, прерывается где-то в районе верха сфер, начинается вновь внизу и так далее.
Это происходит так быстро, что несколько зазубренных лент видны одновременно. Это может озадачить на несколько минут, но объяснение достаточно просто.
Разряд начинается в ближайших точках, воздух нагревается и поднимает дугу вверх, пока она не прервется, тогда она вновь устанавливается в ближайших точках, и т.д. Поскольку ток легко проходит через конденсатор малой емкости, естественным будет то, что подсоединение только одного контакта к телу того же размера, не важно насколько хорошо изолированного, заметно уменьшает расстояние пробоя дуги.
Отдельный интерес представляют опыты с трубами Гейсслера. Откачанная трубка, не содержащая в себе каких-либо электродов, на некотором расстоянии от катушки будет светиться. Если трубка от вакуумного насоса идет рядом с катушкой, то весь насос ярко светится.

Поднесенная к катушке лампа накаливания начинает светиться и ощутимо нагревается. Если контакты лампы подсоединены к одной из клемм катушки, и к колбе лампы приблизить руку, то возникает очень любопытный и весьма неприятный разряд от стекла к руке, при этом нить [лампы] может раскалиться.
Этот разряд в определенной степени сходен с потоком, исходящим от пластин мощной машины Тэплера, но несравненно больше по величине.
Лампа в этом случае работает как конденсатор, разреженный газ является одной обкладкой, а рука человек— другой.
Когда колбу лампы берут в руку и приближают металлические контакты или приводят их в контакт с проводником, соединенным с катушкой, уголь ярко раскаляется и стекло быстро нагревается.
Со 100-вольтовой лампой в 10 свечей можно без особых неудобств выдержать ток, достаточный для того, чтобы лампа ярко засветилась; но продержать ее в руке можно только несколько минут, потому что стекло разогревается за необычайно короткое время.
Когда трубка загорается при приближении ее к катушке, ее можно погасить, если поместить металлическую пластину в руке между катушкой и трубкой; но если металлическую пластину закрепить на стеклянной палочке или еще как-нибудь изолировать, трубка будет продолжать светиться и тогда, когда внесут пластину, или даже может начать светиться еще ярче.
Этот эффект зависит от положения пластины и трубки относительно катушки, и его легко предсказать, предположив, что имеет место проводимость между одним контактом катушки и другим.
В зависимости от положения пластины она может или отводить ток от трубки, или направлять его к ней.
В другом направлении своей работы автор часто во время экспериментов заставлял лампы накаливания на 50 и 100 вольт гореть с любой [световой] силой, когда оба контакта каждой лампы подключались к толстому медному проводу длиной не более нескольких футов.

Эти эксперименты представляются достаточно интересными, но не более, чем тот странный эксперимент Фарадея, воскрешенный и много раз исполненный недавними исследователями, в котором разряд заставляют бить между двумя концами согнутого медного провода.
Этот эксперимент можно повторить и здесь, что представляется столь же интересным. Когда трубку Гейсслера, контакты которой соединены медным проводом, подносят к катушке, определенно никто не будет готов увидеть, что трубка начнет светиться.
Достаточно любопытно, что она светится, и еще более того, что провод особенного влияния не оказывает.
В первый момент можно подумать, что к этому явлению какое-то отношение имеет сопротивление провода. Но конечно же, это сразу отклоняется, потому что для этого нужна огромная частота.
Этот эффект кажется загадочным только сначала; поразмыслив, становится достаточно ясно, что провод особой разницы не делает.
Это можно объяснить более чем одним способом, но вероятно наилучшим образом согласуется с наблюдениями то предположение, что присутствует проводимость от контактов катушки через пространство.
При этом предположении, если трубку с проводом держать в любом положении, то провод может отбирать не намного более, чем тот ток, который течет через пространство, занятое проводом и металлическими контактами трубки; через прилегающее пространство ток течет практически без возмущения.
По этой причине, если трубку держать в любом положении под прямыми углами к линии, соединяющей клеммы катушки, провод вообще вряд ли оказывает какое-либо влияние, но в положении более или менее параллельном этой линии он до определенной степени влияет на яркость трубки и ее способность загораться.

Исходя из того же предположения можно объяснить и многие другие явления.
В частности, если концы трубки снабдить щетками достаточной величины и держать на линии, соединяющей контакты катушки, она не загорается, и тогда почти весь ток, который иначе бы тек однородно через пространство между щетками, отводится через провод.
Но если трубку в достаточной степени наклонить по отношению к этой линии, она загорается несмотря на щетки.
Также, если металлическую пластину закрепить на стеклянной палочке и держать под прямыми углами к линии, соединяющей клеммы, и ближе к одному из них, то трубка, расположенная более или менее параллельно этой линии, мгновенно загорится, когда один из контактов коснется пластины, и погаснет, когда [контакт] отделится от пластины.
Чем больше размер пластины, до определенного предела, тем легче трубка загорается. Когда трубка располагается под прямыми углами к линии, соединяющей клеммы, а потом поворачивается, ее яркость растет, пока она не станет параллельна этой линии.
Автор должен, однако, отметить, что он не поддерживает идею утечки или тока через пространство более, чем как удобное объяснение, потому что убежден, что все эти эксперименты не могли бы быть выполнены со статической машиной, дающей постоянную разность потенциалов, и что большое отношение к этим явлениям имеет эффект конденсатора.
При работе с катушкой Румкорфа с быстро меняющимися токами следует принять определенные предосторожности.
Первичный ток не следует включать слишком надолго, иначе катушка может стать настолько горячей, что расплавит гуттаперча или парафин, или еще как- нибудь повредит изоляции, и это может произойти на удивление быстро, учитывая силу тока.
При включенном первичном токе контакты обмотки тонкого провода можно соединять без особого риска, поскольку сопротивление настолько велико, что трудно вызвать ток через тонкую обмотку, достаточный, чтобы как-либо его повредить, и на самом деле, катушка в целом может находиться в гораздо большей безопасности, когда контакты тонкого провода соединены, нежели когда они изолированы; однако особенно осторожным надо быть, когда контакты подключаются к Лейденской банке, потому что где-нибудь в районе критической емкости, которая противодействует самоиндукции при существующей частоте, катушку может постигнуть судьба Св. Поликарпа.

Если дорогой вакуумный насос начинает светиться, находясь вблизи катушки или касаясь провода, подключенного к одному из контактов, ток можно оставить только на несколько кратких моментов, иначе стекло потрескается из-за нагревания разреженного газа в одном из узких мест— по собственному опыту автора.
Есть много других интересных моментов, которые можно наблюдать в связи с такой машиной. Эксперименты с телефоном, проводником в сильном поле или с конденсатором или дугой, свидетельствуют о том, что можно воспринимать звуки далеко за верхними пределами общепринятых пределов слышимости.
Телефон издает ноты [с частотами] от двенадцати до тринадцати тысяч колебаний в секунду, далее начинает сказываться неспособность сердечника следовать столь быстрым переменам.
Однако, если магнит и сердечник заменить конденсатором, а контакты подсоединить к высоковольтной вторичной обмотке трансформатора, все еще будет слышно более высокие ноты.
Если ток направить вокруг тонко покрытого сердечника и аккуратно держать небольшой кусочек тонкого листа железа непосредственно вблизи сердечника, звук еще можно слышать при количестве перемен от тринадцати до четырнадцати тысяч в секунду, если ток достаточно сильный.
Помимо этого, небольшая катушка, плотно втиснутая между полюсами мощного магнита, будет при вышеуказанном количестве перемен издавать звук, а дуги можно слышать и при более высокой частоте.
Предел слышимости оценивается разными способами. В работах Сэра Томпсона где- то указывается, что предел— это десять тысяч в секунду или около того.

Другие, но менее надежные, источники определяют его как двадцать четыре тысячи в секунду.
Описанные выше эксперименты убедили автора, что звуки с несравненно более высоким числом вибраций в секунду можно было бы воспринять, если бы их можно было произвести с достаточной мощностью. Нет никакой причины, по которой это не должно было бы быть так.
Уплотнения и разрежения воздуха обязательно вызовут соответствующую вибрацию диафрагмы, и это вызовет определенное ощущение, какова бы ни была — конечно, в определенных пределах, скорость передачи сигнала к нервным центрам, хотя вполне вероятно, что ухо по бедности опыта не будет способно различить такие звуки.
С глазом дело обстоит по-другому; если чувство зрения, как многие считают, основано на некотором эффекте резонанса, никакое количественное увеличение интенсивности эфирной вибрации не сможет расширить наши границы видимости в любую из сторон спектра.
Что и требовалось доказать. Думаю, нужно отметить, что хотя индукционная катушка может дать довольно хороший результат при работе со столь быстро переключающимися переменными токами, тем не менее ее конструкция, почти безотносительно к железному сердечнику, делает ее весьма непригодной для столь высоких частот, и для получения лучших результатов конструкцию следует сильно модифицировать.
Границы слышимости дуги зависят от ее размера. Чем больше поверхность, подверженная эффекту нагрева в дуге, тем выше граница слышимости.
Наиболее высокие звуки издаются высоковольтными разрядами индукционной катушки, в которых дуга, скажем так, является всей поверхностью.
Если R — сопротивление дуги, а С — ток, и если линейные размеры увеличить в n раз, то сопротивление станет R/n, и при той же плотности тока ток будет n2 С; поэтому нагревательный эффект вырастет в n3 раз, а поверхность только в n2 .
По этой причине очень большие дуги не будут испускать никакого ритмического звука даже при очень низкой частоте. При этом надо заметить, что испускаемый звук в некоторой степени зависит от состава угля.
Если уголь содержит очень тугоплавкий материал, при нагревании это поддерживает температуру дуги однородной и звук уменьшается; по этой причине представляется, что для переменной дуги нужны именно такие угли.
При токах таких высоких частот можно получить бесшумные дуги, но настройка лампы становится крайне сложной из-за чрезвычайно слабых притяжений или отталкиваний между проводниками, переносящими эти токи.

Интересной особенностью дуги, полученной таким быстро переменяющимся током, является ее продолжительность.
Этому есть две причины, одна из которых наличествует всегда, а другая лишь иногда.
Одна обусловлена свойством тока, другая — свойством машины. Первая причина более важна, и вызвана быстротой переключений.
Когда дуга формируется периодическим волнообразным током, возникает соответствующая волнообразность в температуре столба газа, и, следовательно, соответствующая волнообразность в сопротивлении дуги.
Но сопротивление дуги чрезвычайно сильно меняется с температурой газового столба, становясь практически бесконечным, когда газ между электродами холодный.
Продолжительность дуги, таким образом, зависит от неспособности столба охлаждаться. По этой причине невозможно поддерживать дуги при токе, переключающемся лишь несколько раз в секунду.
С другой стороны, при практически постоянном токе дуга поддерживается легко, потому что постоянно поддерживаются высокая температура и низкое сопротивление столба.
Чем выше частота, тем меньше интервал времени, в течение которого дуга может остыть и заметно увеличить свое сопротивление.
При частоте 10,000 в секунду или более в дуге того же размера на постоянную температуру накладываются небольшие вариации температуры, как рябь на поверхности глубокого моря.
Эффект нагрева практически непрерывен, и дуга ведет себя как дуга, создаваемая постоянным током, за исключением того, что она может не так легко устанавливаться, и что электроды расходуются дугой одинаково; хотя в этом отношении автор наблюдал некоторые нерегулярности.
Вторая упомянутая причина, которая может и отсутствовать, обуславливается тенденцией машины столь высокой частоты поддерживать практически постоянный ток.
Когда дуга удлиняется, электродвижущая сила растет пропорционально, и дуга становится более продолжительной.

Подобные машины словно специально предназначены для того, чтобы поддерживать постоянный ток, но совсем не подходят для постоянного напряжения.
На самом деле, в определенной категории таких машин почти постоянный ток является практически неизбежным результатом.
Когда сильно увеличивается число полюсов или полярных выступов, становится очень важным зазор. На самом деле, экспериментатору приходится иметь дело с огромным числом очень маленьких машин.
Потом, есть сопротивление в якоре, которое высокая частота увеличивает чрезвычайно.
Потом, опять же, облегчается магнитное рассеяние. Если чередующихся полюсов три или четыре сотни, рассеяние столь велико, что это практически то же самое, что в двух-полюсной машине соединить полюса куском железа.
Правда, этого недостатка можно более или менее избежать, если использовать везде поле одной полярности, но тогда сталкиваешься с трудностями иной природы. Все эти явления стремятся поддерживать в цепи якоря постоянный ток.
В этой связи интересно отметить, что даже сегодняшние инженеры изумляются работе машины постоянного тока, так же, как несколько лет назад они считали удивительной способность машины поддерживать постоянную разность потенциала между контактами. Хотя одного результата так же легко добиться, как и другого.
Надо только помнить, что в индукционном приборе любого вида, если нужен постоянный потенциал, индуктивное отношение между первичной, или возбуждающей, цепью и вторичной цепью, или якорем, должно быть как можно ближе.
Тогда как в приборе для постоянного тока нужно как раз противоположное. Более того, противодействие течению тока в индуцируемой цепи должно быть как можно меньше в первом случае и как можно больше во втором.
Но противодействие течению тока может вызываться более чем одним способом. Его можно вызвать омическим сопротивлением или самоиндукцией.

Можно сделать индуцируемую цепь динамо машины или трансформатора с таким большим сопротивлением, что что в работе с приборами гораздо меньшего сопротивления в очень широких пределах будет поддерживаться почти постоянный ток.
Но это большое сопротивление приводит к огромной потере в мощности, и поэтому непрактично.
С самоиндукцией дело обстоит по-другому. Самоиндукция не обязательно означает потерю мощности.
Мораль такова: вместо сопротивления используйте самоиндукцию. Кроме того, есть обстоятельство, которое способствует принятию такого плана действий, и состоит оно в том, что очень высокую самоиндукцию можно получить дешево, окружив сравнительно небольшую длину провода более или менее полностью железом, и, более того, эффект можно усиливать, вызывая быструю волнообразность тока.
Чтобы все это просуммировать, для постоянного тока требования такие: Слабая магнитная связь между индуцируемой и индуцирующей цепями, насколько возможно высокая самоиндукция при наименьшем сопротивлении, наибольшая возможная частота перемен тока.
Для постоянного потенциала, напротив, требуются: Как можно более близкую магнитную связь между цепями, равномерный индуцируемый ток, и, если возможно, никакой реакции.
Если в машине постоянного потенциала последние условия получается выполнить полностью, ее выход будет многократно превосходить выход машины, изначально предназначенной для того, чтобы давать постоянный ток.
К несчастью, тот вид машин, в которых эти условия можно соблюсти, имеет очень мало практической ценности из-за маленькой получаемой электродвижущей силы и сложностей в съеме тока.

С их обостренным инстинктом изобретателей нынешние электро-дуговики быстро распознали, чего не хватает машине постоянного тока.
Их машины дугового света имеют слабые поля, большие якоря с огромной длиной медного провода и небольшим числом сегментов коммутатора, чтобы давать сильные изменения в силе тока и ввести в игру самоиндукцию.
Подобные машины могут поддерживать практически постоянный ток в больших пределах вариации сопротивления цепи.
Их выход, конечно, уменьшается соответственно, но, наверное именно имея в виду не слишком уж сильно этот выход уменьшать, и используется простой прибор для компенсации избыточных вариаций.
Волнообразность тока— едва ли не самое важное для коммерческого успеха системы электродугового света.
Она вводит в цепь стабилизирующий элемент вместо большого омического сопротивления, не приводя к большим потерям мощности, и, что еще более важно, она позволяет использовать простые зажимные (clutch) лампы, которые при токе с определенным, наилучшим для каждой конкретной лампы, количеством импульсов в секунду, будут, если за ними правильно следить, регулироваться даже лучше, чем самые хорошие точные (clock-work) лампы. Это открытие было сделано автором— с опозданием на несколько лет.

Знающие Английские электротехники утверждали, что в машине постоянного тока или трансформаторе на регулировку влияет изменение фазы вторичной цепи.
Можно легко показать ошибочность этой точки зрения, если вместо ламп использовать устройства, каждое из которых обладает самоиндукцией и емкостью, или самоиндукцией и сопротивлением, то есть замедляющей и ускоряющей компонентами, в таких пропорциях, чтобы не влиять существенно на фазу вторичного тока.
Любое количество таких устройств можно вставить в цепь или убрать из нее, и все равно окажется, что регулировка есть, постоянный ток поддерживается, а электродвижущая сила с числом устройств меняется.
Изменение фазы вторичного тока — это просто результат, следующий из изменений в сопротивлении, и, хотя вторичная реакция всегда более или менее важна, тем не менее реальная причина регулировки лежит в наличии вышеперечисленных условий.
Следует, однако, указать, что в случае машины данные выше замечания должны ограничиваться случаями, когда машина возбуждается независимо.
Если возбуждение выполняется посредством коммутации тока якоря, то фиксированное положение щеток делает любое смещение нейтральной линии чрезвычайно важным, и не следует считать нескромным со стороны автора отметить, что насколько позволяют записи, представляется, что он был первым, кто успешно отрегулировал машины, обеспечив шунтирующее соединение между точкой внешней цепи и коммутатором посредством третьей щетки.
Когда якорь и поле надлежащим образом спропорционированны, и щетки размещены в определенных для них положениях, постоянный ток или постоянный потенциал получается в результате сдвига диаметра коммутации через изменение нагрузок.

В связи с машинами таких высоких частот конденсатор позволяет провести очень интересное исследование.
Легко увеличить электродвижущую силу такой машины в четыре или пять раз по величине просто подключив к цепи конденсатор, и автор постоянно использовал такой конденсатор для регулировки, как предлагает Блэксли в своей книге по переменным токам, в которой он с изысканной простотой и легкостью рассмотрел наиболее часто возникающие проблемы с конденсатором.
Высокая частота позволяет использовать малые емкости и делает исследование несложным. Тем не менее, хотя результат большинства экспериментов легко можно предсказать, некоторые явления сначала кажутся удивительными.
Примером может послужить один эксперимент, проведенный три или четыре месяца назад с такой машиной и конденсатором. Использовавшаяся машина давала около 20,000 перемен в секунду.
Два оголенных провода примерно двадцати футов длиной и двух миллиметров в диаметре, расположенные вблизи друг друга, были одним концом подключены к контактам машины, а другим — к конденсатору.
Использовался небольшой трансформатор, конечно, без железного сердечника, чтобы привести показания в диапазон вольтметра Кардью, который подключался ко вторичной обмотке.
На контактах конденсатора электродвижущая сила была примерно 120 вольт, откуда дюйм за дюймом постепенно снижалась до 65 вольт на контактах машины.
Это было практически так же, как если бы конденсатор был генератором, а провод и цепь якоря— просто подключенным к нему сопротивлением.
Автор искал случай резонанса, но не смог увеличить эффект ни посредством аккуратного и постепенного варьирования емкости, ни посредством изменения скорости машины.
Случая полного резонанса достичь не; удалось. Когда конденсатор был подключен к контактам машины— при этом сначала была определена самоиндукция якоря в максимальном и минимальном положении и взято среднее значение, емкость, которая давала наибольшую электродвижущую силу, ближе всего соответствовала той, которая просто противодействовала самоиндукции при данной частоте.
Если емкость увеличивалась или уменьшалась, электродвижущая сила как и ожидалось, падала.

При столь высоких частотах как те, что упомянуты выше, эффекты конденсатора очень важны. Конденсатор становиться очень эффективным прибором, способным передавать значительную энергию.
Автор считал, что машины высокой частоты могут найти применение по крайней мере в случаях, когда не предполагается передача на большие расстояния.
С помощью конденсаторов можно уменьшить рост сопротивления в проводниках и увеличить в устройствах, если нужны эффекты нагрева, можно сделать трансформаторы более эффективными, добиться более высоких мощностей и достичь значительных результатов.
Работая с машинами высокой частоты автор смог наблюдать эффекты от использования конденсаторов, которые в противном случае могли избежать его внимания.
Его очень заинтересовало явление, наблюдавшееся на электросети Ферранти, о котором так много говорили.
Мнения высказывали знающие электротехники, но кажется, вплоть до настоящего дня все пока еще находятся в догадках.
Без сомнений, в высказанных взглядах должна содержаться истина, но поскольку мнения различаются, часть из них должна быть ошибочной.
Когда автор увидел диаграмму Ферранти в Электротехнике за 19 Декабря, у него сложилось мнение об этом эффекте.
За отсутствием всех необходимых данных он должен удовлетвориться тем, что опишет на словах процесс, который, как он считает, несомненно и должен был происходить.
Конденсатор привносит два эффекта: (1) Он меняет фазы токов в цепях; и (2) он меняет силу токов.
Что касается изменений фазы, действие конденсатора состоит в том, что оно ускоряет ток во вторичной цепи в Дептфорде и замедляет в первичной в Лондоне.
Первое влечет уменьшение самоиндукции в первичной в Дептфорде, а это означает меньшую электродвижущую силу динамо. Замедление в первичной цепи в Лондоне, если говорить только о фазе, имеет незначительный эффект или вообще никакого, потому что фаза тока во вторичной цепи в Лондоне не поддерживалась постоянной.

Далее, вторым эффектом конденсатора является увеличение тока в обеих цепях. Неважно, равны эти токи или нет; но необходимо сказать, чтобы увидеть важность Дептфордовского повышающего трансформатора, что увеличение тока в обеих цепях вызывает обратные эффекты.
В Дептфорде это означает дальнейшее снижение электродвижущей силы в первичной цепи, а в Лондоне это означает повышение электродвижущей силы во вторичной. Таким образом, всё содействует появлению наблюдавшегося эффекта.
Когда динамо подключено к сети непосредственно, можно увидеть, что никакого подобного эффекта происходить не может.
Автора особенно заинтересовали предположения и взгляды, выраженные М-ром Свинбурном. М-р Свинбурн часто оказывал ему почтение, не соглашаясь с его взглядами.
Три года назад, когда автор, против преобладающего мнения инженеров, продвигал трансформатор с открытой цепью, М-р. Свинбурн был первым, кто критиковал его, когда писал в Electrician: "Этот трансформатор (Теслы) обязан быть неэффективным; его магнитные полюса вращаются, и поэтому у него не замкнута магнитная цепь".
Два года спустя М-р Свинбурн становится поборником трансформатора с открытой цепью, и предлагает преобразовать его.
Автор не может поверить в теорию реакции якоря, изложенную в Industries, хотя несомненно в ней есть доля истины. Но толкование М-ра Свинбурна столь широко, что может означать что угодно.

М-р Свинбурн, кажется, был первым, кто привлек внимание к нагреванию конденсаторов.
Изумление, выраженное по этому поводу талантливейшим электротехником— это поразительная иллюстрация желательности проведения экспериментов в большем масштабе. Научный исследователь, который имеет дело с мельчайшими величинами, кто наблюдает слабейшие эффекты, заслуживает доверия гораздо большего, нежели тот, кто экспериментирует с аппаратурой индустриального масштаба.
На самом деле история науки увековечивает примеры непостижимого мастерства, терпения и проницательности исследований. Но каково бы ни было мастерство, какова бы ни была острота понимания исследователя, они могут только выиграть от увеличения эффекта, тем самым способствуя изысканиям.
Если бы Фарадей выполнил хотя бы один из своих экспериментов по динамической индукции в большем масштабе, это могло бы принести неисчислимую выгоду.
По мнению автора, нагревание конденсаторов вызывается тремя различными причинами: первая— утечка или проводимость; вторая— несовершенство упругости диэлектрика, и третье— волнение зарядов в проводнике.
Во многих экспериментах автор сталкивался с проблемой передачи наибольшего возможного количества энергии через диэлектрик.
Например, он делал лампы накаливания, в которых конца нитей накала были полностью запаяны в стекло, но подключены к обкладкам внутреннего конденсатора, так что всю энергию нужно было передавать через стекло при площади поверхности конденсатора не больше нескольких квадратных сантиметров.



Эти лампы при достаточно высоких частотах имели бы практический успех.
При переменах на уровне 15,000 в секунду нити легко раскалялись. При более низких частотах это тоже можно было выполнить, но разность потенциалов, конечно, надо было увеличить.
Далее автор обнаружил, что через некоторое время в стекле появляются отверстия и вакуум нарушается. Чем выше частота тем дольше может выдержать лампа.
Такой износ диэлектрика всегда имеет место, когда количество энергии, передаваемое через диэлектрик определенного размера и определенной частотой, слишком велико.
Стекло выдерживает лучше всего, но даже стекло изнашивается. Конечно, в этом случае разность потенциалов на пластинах слишком велика, и вызывает потери на проводимость и несовершенную упругость.
Если нужно сделать конденсаторы, способные выдерживать разности потенциалов, то единственный диэлектрик, который не приводит ни к каким потерям, — это газ под давлением.
Автор работал с воздухом под огромными давлениями, но в этом направлении есть огромное количество практических трудностей.
Он думает, что для того, чтобы сделать конденсаторы, имеющие значительную практическую пользу, следует использовать более высокие частоты, хотя такой план имеет помимо прочих тот недостаток, что система становится весьма неподходящей для работы моторов.

Если автор не ошибается, М-р Свинбурн предлагал способ возбуждения генератора переменного тока с помощью конденсатора.
Много лет назад автор выполнил эксперименты, имевшие в виду целью получить практичный самовозбуждающийся генератор переменного тока.
Он разными путями преуспел в получении определенного возбуждения магнитов посредством переменных токов, которые не переключались механическими устройствами.
Тем не менее, его эксперименты выявили факт, твердый как скала Гибралтара.
Никакое практическое возбуждение нельзя получить одним только периодическим изменяющимся и не переключающимся током.
Причина в том, что изменения в силе возбуждающего тока вызывают соответствующие изменения в силе поля, что приводит к возбуждению токов в якоре; и эти токи являются помехой тем, которые производятся движением якоря через поле, при этом первые на четверть фазы опережают вторые. Если поле сделать ровным, не получится никакого возбуждения; если его не выравнивать, определенное возбуждение получается, но магниты нагреваются.
Комбинируя два возбуждающих тока— смещенных на четверть фазы,— можно получить возбуждение в обоих случаях, и если магниты не выровнять, эффект нагрева будет сравнительно мал, поскольку поддерживается однородность силы поля, и, если бы можно было получить совершенно однородное поле, возбуждение такого вида дало бы достаточные практические результаты.
Если эти результаты должен обеспечивать конденсатор, как предложил М-р Свинбурн, то нужно скомбинировать два тока, разделенные четвертью фазы; это то же, что сказать, что обмотки якоря должны быть намотаны в две укладки и подсоединены к одному или двум независимым конденсаторам.
Автор проделал некоторую работу в этом направлении, но должен отложить описание устройств до будущих времен.


Статья 2: Электролитические часы. (The El. Engineer, May 6, 1891).

Если тонкий, легко вращающийся и хорошо сбалансированный диск или цилиндр поместить в соответствующий гальванический раствор посредине между анодом и катодом, то одна половина диска станет электрически положительной, а другая половина — электрически отрицательной.
Благодаря этому металл осаждается на одной и удаляется с другой половины, и диск приводится во вращение под действием силы тяжести.
Поскольку количество металла, который осаждается и удаляется, пропорционально силе тока, то и скорость вращения, если она будет мала, пропорциональна току.
Первый прибор такого вида заработал у меня в начале 1888г. в попытках сконструировать электрометр.
Узнав, однако, что меня опередили другие, по крайней мере в том, что касается самого принципа, я изобрел прибор, приведенный на прилагающейся гравюре.
Здесь F — прямоугольная рамка из твердой резины, закрепленная на деревянном основании.
Рамка примерно 1/2 дюйма толщиной, 6 дюймов длиной и 5 дюймов высотой.
На обеих ее вертикальных сторонах закреплены толстые металлические пластины, которые служат электродами. Эти пластины жестко удерживаются на резине зажимами T Т и T1T1.
На боковых сторонах рамки закреплены латунные пластины, соответственно, В и В1, той же формы, что и резиновая рамка F.
Эти латунные пластины служат для того, чтобы удерживать на своем месте две пластины из полированного стекла, и если под и над каждой пластиной проложить резиновую прокладку, то сосуд герметично запечатывается.
При этом пластины можно прикручивать туго, не боясь их сломать.

Гальванический раствор, который в данном случае является концентрированным раствором медного купороса, заливается внутрь через отверстие в верхней части резиновой рамки, закрывающееся затычкой R.
В центре сосуда помещается легкий и тонко сбалансированный медный диск D, ось которого поддерживается капиллярной стеклянной трубкой, прикрепленной к одной из стеклянных пластин сургучом или другим веществом, на которое не действует жидкость.
Чтобы насколько возможно уменьшить трение, в капиллярной трубке, которая служит в роли подшипника, находится капелька масла. Центр диска должен быть равноудален от обоих электродов.
К одной стороне оси диска прикрепляется очень легкий указатель или стрелка, лучше из стеклянного волоска.
На стеклянной пластинке, которая со стороны этой стрелки, находится окружность с обычными часовыми делениями, выгравированная на ней как на циферблате часов.
Эта окружность может быть подвижной, чтобы ее можно было установить в любое положение относительно стрелки.
Если циферблат неподвижный, то вместе как стрелку можно использовать тонкую проволочку из отожженного железа.
Проволочка должна быть размещена так, чтобы находиться точно в центре раствора. С помощью подковообразного магнита диск можно поворачивать и устанавливать в нужное положение.
Аккуратно заливается медный электролит и затычка R вставляется на место, контакты батареи постоянного тока подключаются к зажимам Т и Т1, после чего время от времени наблюдается вращение диска. К другим зажимам Т и Т1 подключается шунт, и меняя сопротивление этого шунта, или другого диска, регулируется скорость вращения, пока она не будет соответствовать делениям циферблата; то есть, пока, например, не будет делаться один оборот за 12 часов.

Очевидно, данный инструмент был придуман не для практических целей. Как и то, что он не будет достаточно точным в своих показаниях.
Есть определенные ошибки, которые неизбежны в принципе; например, трение, которое нельзя полностью преодолеть. Но этот прибор интересен как средство новым способом показывать время.
Тем не менее, показано, что при тщательной конструкции, постоянном токе и компенсаторе температуры можно сделать так, что он будет вращаться с почти безупречно равномерной скоростью.
Чтобы достичь лучших результатов, плотность тока, конечно, должна быть очень мала, и диск примерно 3 дюйма в диаметре должен делать оборот за 6 часов. Вероятно, если использовать серебряный электролит и серебряный диск, то результаты будут еще лучше.
Очень интересно наблюдать поведение электролита и диска в таком узком прозрачном сосуде.
Электролит становится чисто голубым, одна сторона диска кажется серебряно белой в определенном положении, а другая половина темной как тусклое серебро.
Никакой разделительной линии нет, и оттенки красиво переходят один в другой.


Статья 3: Приборы электростатической генерации переменного тока.
(The El. Engineer, May 6, 1891).

Около полутора лет назад, занимаясь изучением переменных токов короткой продолжительности, мне пришло в голову, что такие токи можно было бы получать вращая заряженные поверхности очень близко к проводникам.

Соответственно, я придумал разные виды экспериментальных установок, две из которых проиллюстрированы на идущих ниже рисунках.
В приборе, показанном на Рис.1, А — это кольцо из сухого твердого дерева, обработанного шеллаком, на внутренней стороне которого находятся два множества обкладок из оловянной фольги, a и b .
Все обкладки а и все обкладки b, соответственно, соединены вместе между собой, но независимо друг от друга. Эти два множества обкладок подключены к двум контактам Т.
Для ясности показаны только несколько обкладок. Внутри кольца А и совсем близко к нему установлен вращающийся цилиндр В, тоже из сухого твердого дерева, обработанного шеллаком, и на нем находятся два аналогичных множества обкладок, a1 и b1 , все обкладки а' соединены с одним кольцом, а все остальные, Л, с другим, кольца помечены + и .
Эти два множества, а' и b1 , заряжены до высокого потенциала от машины Гольца или Вимшурста, и еще могут быть подключены к банке некоторой емкости.
Внутренняя сторона кольца А покрыта слюдой, чтобы увеличить индукцию, а также для того, чтобы можно было использовать более высокие потенциалы.
Когда цилиндр В с заряженными обкладками вращается, то цепь, соединенная с контактами Т , пересекают переменные токи.
Другой вид прибора показан на Рис.2.

В этом приборе два множества обкладок из оловянной фольги наклеены на пластину из эбонита, и есть другая такая же пластина, которая вращается и обкладки которой заряжены, как на Рис.1.
Выход такого прибора очень мал, но можно наблюдать некоторые эффекты, свойственные переменным токам с короткими периодами.
Правда, их не сравнить с эффектами, получаемыми с индукционной катушкой, подключенной к машине переменного тока высокой частоты, ряд которых я недавно описывал.


Статья 4:ЭЛЕКТРИЧЕСКИЙ РАЗРЯД В ВАКУУМНЫХ ТРУБКАХ
(The El. Engineer, July 1, 1891)

В журнале The Electrical Engineer за 10 Июня я встретил описание некоторых экспериментов Проф. Дж. Дж. Томпсона, с "Электрическим Разрядом в Вакуумных Трубках", и в вашем выпуске от 24 Июня Проф. Элиу Томпсон описывает эксперимент того же типа.
Фундаментальная идея в этих экспериментах состоит в том, чтобы создать электродвижущую силу в вакуумной трубке— предпочтительно, не содержащей внутри себя каких-либо электродов, посредством электромагнитной индукции и таким образом возбудить трубку.
Насколько я представляю сам предмет, я склонен думать, что для любого экспериментатора, внимательно изучившего стоящую перед нами проблему и попытавшегося найти ее решение, эта идея должна выглядеть так же, как, например, идея заменить покрытия Лейденской банки из оловянной фольги на разреженный газ и возбудить свечение в получившемся в результате конденсаторе, попеременно заряжая и разряжая его.
Отмечу, хотя мысль и очевидна, что какова бы ни была суть дела в данном направлении исследований, она обязательно зависит от полноты изучения предмета и правильности наблюдений.
Следующие ниже строки написаны без какого-либо стремления с моей стороны увековечить себя как одного из тех, кто проделал аналогичные эксперименты, но с желанием помочь другим экспериментаторам, указав на определенные особенности наблюдаемого явления, которые, по всей видимости, не были отмечены Проф. Дж. Дж. Томпсоном, который, тем не менее, представляется вполне систематичным в своих исследованиях, и который был первым, кто обнародовал свои результаты.
Отмеченные мной особенности могут показаться расходящимися со взглядами Проф. Дж. Дж. Томпсона и представить явление в другом свете.
Мои исследования в данном направлении полностью захватили меня в течение зимы и весны прошлого года.
За это время было проведено много различных экспериментов, и в процессе моего обмена мыслями по этому предмету с М-ром Альфредом С. Брауном из Объединенной Западной Телеграфной Компании, было предложено множество различных вариантов расположения, которые я воплотил на практике.
Рис.1 может послужить примером одной из многочисленных форм прибора.
Эта состоит из большой стеклянной трубки, запаянной с одного конца и вдающейся внутрь колбы обычной лампы накаливания.

Первичная обмотка, обычно состоящая из нескольких оборотов толстой, хорошо изолированной медной полосы, вставляется внутрь трубки, а вторичную составляет внутреннее пространство колбы.
К такой форме прибора я пришел после некоторого экспериментирования, и использовал ее главным образом с целью позволить мне поместить полированную отражающую поверхность на внутренней стороне трубки, и для этого последний оборот первичной обмотки был покрыт тонкой серебряной полосой.
Во всех формах прибора, которые использовались, не было никаких сложностей с возбуждением светящейся сферы или цилиндра в близости от первичной обмотки.
Что касается числа витков, я не могу до конца понять, почему Проф. Дж. Дж. Томпсону потребовалось считать, что несколько витков "вполне достаточно", но чтобы не приписывать ему точку зрения, которую он мог и не иметь, я добавлю, что у меня создалось это впечатление из чтения опубликованных конспектов его лекции.
Ясно, что число витков, дающее наилучший результат в каждом случае, зависит от размеров прибора, и, не будь это так по многим соображениям, один виток всегда давал бы наилучший результат.

Рис. 1

Я обнаружил, что в этих экспериментах предпочтительно использовать машину переменного тока, дающую умеренное число перемен в секунду, чтобы возбуждать индукционную катушку для заряда Лейденской банки, которая разряжается через первичную — схематично показано на Рис. 2, потому что в этом случае, перед тем как возникает разряд пробоя, трубки или колба слегка возбуждается и явно облегчается формирование светящейся сферы.
Но я также в некоторых экспериментах использовал и машину Вимшурста. Точка зрения Проф.Дж.Дж.Томпсона на рассматриваемые явления представляется такой, что они пол- ностью обусловлены электромагнитным действием.
Я придерживался одно время того же мнения, но внимательное исследование предмета привело меня к убеждению, они имеют скорее электростатическую природу.
Следует помнить, что в этих экспериментах нам приходится иметь дело с первичными Рис.1. токами огромной частоты или скорости изменения и высокого потенциала, и что вторичный проводник состоит из разреженного газа, и что при таких условиях электростатические эффекты должны играть важную роль.
В поддержку своей точки зрения я опишу несколько проделанных мной экспериментов. Для возбуждения свечения в трубке не является абсолютно необходимым, чтобы проводник был замкнутым.
Например, если обычную откачанную трубку (желательно большого диаметра) окружить спиралью из толстого медного провода, служащего первичной цепью, в трубке можно возбудить слабо светящуюся спираль, что грубо показано на Рис.3.
В одном из этих экспериментов наблюдался любопытный эффект; а именно, внутри трубки сформировались два интенсивно светящихся круга, каждый из которых близок к витку первичной спирали, и я приписал это явление наличию узлов на первичной обмотке.

Рис. 2.

Эти круги были соединены тусклой светящейся спиралью, параллельной первичной обмотке и находящейся очень близко к ней. Я обнаружил, что для получения этого эффекта нужно заряжать банку до предела.
Витки спирали стремятся сблизиться и образовать окружности, но это, конечно, можно было бы ожидать, и это не обязательно указывает на электромагнитный эффект; тогда как тот факт, что можно получить свечение вдоль первичной обмотки в форме открытой спирали свидетельствует в пользу электростатического эффекта.
Если использовать цепь с обратным ходом Д-ра Лоджа, это электростатическое влияние столь же несомненно.
Устройство показано на Рис.4. В его экспериментах две полые откачанные трубки Н Н надевались на провода цепи с обратным ходом, и при разряде банки обычным способом в трубках возбуждалось свечение.
Другой проведенный эксперимент показан на Рис.5. В данном случае обычная колба лампы была окружена одним или двумя оборотами толстого медного провода Р , и светящийся круг L возбуждался в колбе разрядом банки через первичную цепь.
Колба лампы была со стороны, обратной по отношению к первичной цепи, снабжена покрытием из оловянной фольги, и каждый раз, когда эту фольгу соединяли с землей или с большими объектами, свечение круга заметно возрастало.
В других экспериментах я замечал, что когда первичная цепь касается стекла, светящийся круг получить легче, и он резче очерчен; но я не отмечал, что, вообще говоря, индуцированные круги были очень резко очерчены, как наблюдал Проф.Дж.Дж. Томпсон; напротив, в моих экспериментах они были широкими и часто светилась вся колба или трубка; и в одном случае я наблюдал интенсивное багровое сияние, о котором говорит Проф. Дж. Дж. Томпсон.

Рис. 3.

Но круги всегда были совсем вблизи первичной цепи, и получать их было намного легче, когда последняя находилась очень близко к стеклу, намного проще, чем можно было бы ожидать, предполагая, что эффект электромагнитный и учитывая дистанцию; эти факты говорят за электростатический эффект.
Более того, я наблюдал, что есть молекулярная бомбардировка в плоскости светящегося круга под прямыми углами к стеклу, — если полагать, что круг лежит в плоскости первичной цепи, эта бомбардировка очевидна из быстрого нагревания стекла вблизи первичной цепи.
Если бы бомбардировка не шла под прямыми углами к стеклу, нагрев не был бы столь быстрым.
Если есть круговое движение молекул, составляющих светящийся круг, я думаю, можно было бы сделать его видимым, если поместить внутри трубки или колбы, радиально по отношению к кругу, тонкую пластинку слюды, порытую каким-нибудь фосфоресцентным материалом, и другую такую пластинку тангенциально к кругу.
Если бы молекулы совершали круговое движение, первая пластинка фосфоресцировала бы ярче.
За недостатком времени я, однако, не смог провести такой эксперимент.

Рис.4.

Другое наблюдение, сделанное мной, состояло в том, что когда определенная индуктивная емкость среды между первичной и вторичной цепями увеличивается, индуктивный эффект усиливается.
Это грубо показано на Рис.6. В этом случае свечение возбуждалось в откачанной трубке или колбе В и стеклянная трубка Т скользила между первичной цепью и колбой, когда был замечен описываемый эффект. Если бы действие было полностью электромагнитным, никаких изменений бы не наблюдалось.
Я также заметил, что когда колба окружена проводом, замкнутым на себя и лежащим в плоскости первичной цепи, это не препятствует формированию светящегося круга внутри; колбы.
Но если вместо этого провода будет широкая полоса оловянной фольги, приклеенная к колбе, образования светящегося обруча не будет, потому что воздействие распределяется по большей площади.
Эффект от замкнутой фольги без сомнения имел электростатическую природу, потому что у фольги сопротивление было гораздо больше, чем у замкнутого провода, и поэтому давало гораздо меньший электромагнитный эффект.
Некоторые эксперименты Проф.Дж.Дж.Томпсона также, как кажется, демонстрируют определенное электростатическое действие.
Например, в эксперименте с колбой, заключенной в колоколообразной банке, я думаю, что когда последняя откачивалась до уровня наибольшей проводимости содержащегося в ней газа, образование круга в колбе и банке не возникало из-за того, что пространство, окружающее первичную цепь, имело слишком высокую проводимость; когда банку откачивали еще больше, проводимость пространства вокруг первичной цепи уменьшалось, и круги обязательно возникали сначала в колоколообразной банке, потому что разреженный газ находился ближе к первичной цепи.
Но если бы индуктивный эффект был очень мощным, они вероятно возникали бы и в колбе тоже.
Если, с другой стороны, откачать колоколообразную банку до высшей степени, они вполне вероятно появились бы только в колбе, если предположить, что откачанное пространство будет не проводящим.
Предположив, что в этих явлениях работают электростатические эффекты, мы обнаружим, что становится

Рис.5 Рис.6

легко объяснить, почему введение ртути или нагревание колбы мешает образованию светящегося обруча или сокращает послесвечение; а также почему в некоторых случаях платиновый провод препятствует возбуждению в трубке.
Тем не менее, некоторые эксперименты Проф.Дж.Дж.Томпсона, как кажется, указывают на электромагнитный эффект.
Я могу добавить, что в одном из моих экспериментов, когда вакуум получался по методу Торричелли, я не мог получить светящийся обруч, но это могло быть и благодаря слабому возбуждающему току.
Мой главный аргумент таков: Я экспериментально доказал, что если один и тот же разряд, которого едва лишь хватает, чтобы возбудить в колбе светящийся обруч, при пропускании через первичную цепь будет направлен таким образом, чтобы он усиливал электростатический индуктивный эффект, — а именно, обращая его вверх, — то откачанная трубка без электродов может возбуждаться на расстоянии нескольких футов.

ЗАМЕЧАНИЕ ПРОФ. ДЖ. ДЖ. ТОМПСОНА В ЛОНДОНСКОМ ELECTRICIAN,24 ИЮЛЯ 1891 Г.

«Кажется, М-р. Тесла приписывает наблюдавшиеся им эффекты электростатическому воздействию, и у меня нет сомнений, исходя из описания, которое он дает своему способу проведения его экспериментов, что в них электростатическое воздействие играет очень важную роль.
Он, однако, как кажется, неправильно понял мою позицию в том, что касается причин этих разрядов, которая состоит не в том, что, как он полагает, свечение в трубках без электродов не может быть получено в результате электростатического воздействия, а в том, что его также можно получить, когда это воздействие исключается.
На самом деле, гораздо проще получить свечение, когда эти электростатические эффекты действуют, чем когда они не действуют.
В качестве иллюстрации этого я могу упомянуть, что мой первый эксперимент, который я пробовал с разрядом Лейденской банки, производил свечение в трубке, но только после непрерывного шестинедельного экспериментирования я смог получить разряд; в откачанной трубке, который, как я убедился, был обусловлен тем, что обычно называется электродинамическим действием.
Целесообразно ясно понять, что же мы подразумеваем под электростатическим действием.
Если до разряда банки поднять потенциал первичной катушки до высоких значений, она будет индуцировать через стекло трубки распределение электричества.
Когда потенциал первичной катушки неожиданно падает, эта электрификация будет перераспределять себя, и может проходить через разреженный газ и в процессе этого производить свечение.
Пока протекает разряд банки, сложно и, с теоретической точки зрения, нежелательно разделять эффект на части, одна из которых электростатическая, а другая электромагнитная; что мы можем доказать, так это то, что в данном случае разряд не такой, какой был бы вызван электродвижущей силой производной от потенциальной функции.

В моих экспериментах первичная катушка была соединена с землей, и в качестве еще большей предосторожности, первичная катушка была отделена от разрядной трубки экраном из промокательной бумаги, намоченной в разбавленной серной кислоте и соединенной с землей.
Мокрая промокательная бумага — достаточно хороший проводник для того, чтобы экранировать стационарный электростатический эффект, хотя недостаточно хороший, чтобы остановить волны переменной напряженности электрического поля.
Во время показа экспериментов Физическому Обществу я не мог, естественно, держать трубки укрытыми, но, если моя память меня не обманывает, я сообщил о предосторожностях, которые я принимал против электростатического эффекта.
Чтобы исправить недоразумение я могу сказать, что не читал Обществу формальной бумаги, моей целью было продемонстрировать несколько из наиболее типичных экспериментов.
Отзыв об экспериментах в Электротехнике был сделан из заметок репортера, он не был написан, и даже не был прочитан мной.
Я теперь уже почти закончил писать, и надеюсь очень скоро опубликовать, отчет об этих и большом числе других экспериментов, включая и некоторые аналогичные упомянутым М-ром Теслой по влиянию проводников, расположенных рядом с разрядной трубкой, которые, как я обнаружил, в одних случаях вызывают уменьшение, а в других — увеличение яркости разряда.
А также и эксперименты по воздействию присутствия веществ с большой специфической диэлектрической проницаемостью.
Кажется, они допускают удовлетворительное объяснение, за которым я должен отослать читателей к моей статье.»

ОТВЕТ НА ЗАМЕЧАНИЕ ДЖ. ДЖ. ТОМПСОНА В ELECTRICIAN,
The Electrical Engineer, Нью-Йорк, 26 Августа 1891 г.

В The Electrical Engineer от 12 Августа я обнаружил некоторые замечания Проф. Дж. Дж. Томпсона, которые первоначально появились в Лондонском Electrician и имели отношения к некоторым экспериментам, описанным мной в вашем издании от 1 Июля.
У меня не было, как кажется полагает Проф. Дж. Дж. Томасов, неправильного понимания его позиции относительно причины рассматривавшихся явлений, но я считал, что в его экспериментах, как и в моих собственных, огромное значение имеет электростатический эффект.
Из скудных описаний его экспериментов не явствовало, что были предприняты все меры для исключения этих эффектов.
Я не сомневался в том, что если полностью исключить электростатическое воздействие, то возбудить свечение в закрытой трубке можно.
На самом деле, сначала, я сам искал чисто электродинамический эффект и верил, что я его получил. Но многие эксперименты, проведенные в то время, доказали мне, что электростатический эффект был в целом гораздо важнее, и допускает более удовлетворительное объяснение большинства наблюдавшихся эффектов.
Употребляя термин электростатический, я имел в виду более природу воздействия, нежели стационарность условий, что является обычным значением этого термина.
Чтобы выразиться более ясно, я предположу, что закрытая откачанная трубка размещается рядом с небольшой сферой, заряженной до очень высокого потенциала.
Сфера действовала бы на трубку индуктивно, и через распределение электричества в ней несомненно вызывала бы свечение (при достаточно высоком потенциале) до тех пор, пока не были достигнуты неизменные условия.
Полагая, что трубка совершенно хорошо изолирована, во время действия распределения была бы только одна моментальная вспышка. Это было бы вызвано просто электростатическим воздействием.
А теперь предположим, что заряженная сфера сдвигалась бы на короткие промежутки с большой скоростью вдоль откачанной трубки.

Теперь трубка возбуждалась бы непрерывно, потому что двигающаяся сфера вызывала бы постоянное перераспределение электричества и столкновения молекул разреженного газа.
Мы снова имели бы дело с электростатическим эффектом, и вдобавок наблюдали бы электродинамический эффект.
Но если бы было обнаружено, например, что полученный эффект более зависит от диэлектрической проницаемости, нежели от магнитной проницаемости среды, что непременно имело бы место при скоростях, несравнимо меньших скорости света, — то я думаю, было бы оправданно для меня говорить, что этот эффект в основном был электростатической природы.
И хотя я не имею в виду сказать, что какие-либо сходные условия преобладают в разряде Лейденской банки через первичную цепь, но я думаю, что такое было бы желательным.
Именно в духе приведенного выше примера я и использовал понятия "более электростатической природы" и исследовал влияние тел с высокой [диэлектрической] проницаемостью, и обнаружил, например, важность качества стекла, из которого изготовлена трубка.
Я также старался выяснить влияние среды с высокой [диэлектрической] проницаемостью, используя кислород.
Из грубой оценки получалось, что кислородная трубка при возбуждении при тех же условиях, настолько, насколько можно это определить,дает больше света; но это может, конечно, быть обусловлено многими причинами.
Ни мало не сомневаясь в том, что при предосторожностях, принятых Проф. Дж. Дж. Томпсоном, возбуждаемое свечение обуславливалось только электродинамическим воздействием, я бы все таки сказал, что во многих экспериментах я наблюдал удивительные случаи неэффективности экранирования, и я также обнаружил, что электрификация через воздух часто является очень важной и может, в некоторых случаях, определять возбуждение трубки.
В своем первоначальном сообщении в Electrician Проф. Дж. Дж. Томпсон ссылается на тот факт, что свечение в трубке вблизи провода, через который разряжается Лейденская банка, было отмечено Хитторфом.
Я думаю, что упомянутый эффект слабого свечения отмечался многими экспериментаторами, но в моих экспериментах эффекты были намного мощнее тех, что обычно отмечались.


Статья 5:Заметки об униполярном динамо. (The El. Engineer, Sept. 2, 1891).

Фундаментальным открытиям, великим достижениям интеллекта свойственно сохранять неистощающуюся власть над воображением мыслителя.
Памятный эксперимент Фарадея с диском, вращающимся между двумя полюсами магнита, принесший столь величественный плод, уже давно вошел в повседневную жизнь; хотя этот зародыш современного динамо и мотора имеет некоторые особенности, которые даже сегодня изумят нас, и достойны самого пристального изучения.
Возьмем, например, случай, когда диск из железа или другого металла вращается между двумя противоположными полюсами магнита, и полярные поверхности полностью покрывают обе стороны диска.
И допустим, что ток снимается или подается на него контактами однородно по всему периметру диска.
Первое имеет место в моторе. Во всех обыкновенных моторах работа зависит от определенного смещения или изменения результирующей магнитного притяжения, воздействующего на якорь, и этот процесс осуществляется либо неким механическим приспособлением в моторе, или воздействием токов соответствующего характера.
Мы можем объяснить работу такого мотора точно так же, как мы объясняем работу водяного колеса.
Но в вышеприведенном примере диска, полностью окруженного полярными поверхностями, нет ни сдвига магнитного воздействия, ни какого-либо изменения, насколько известно, и все-таки вращение происходит. Поэтому здесь обычные рассуждения не применимы.
Мы не можем даже дать поверхностного объяснения этому, как в обычных моторах, и работа устройства станет понятной, только после того, как мы поймем самую природу задействованных в ней сил и охватим тайну невидимого связующего механизма.
Для случая динамо машины диск оказывается столь же интересным объектом изучения.
Помимо удивительной способности давать токи одного направления без применения каких- либо переключающих устройств, такая машина отличается от обычного динамо еще и тем, что нет реакции между якорем и полем.
Ток якоря стремится создать намагничивание под прямыми углами к намагничиванию от тока поля, но поскольку ток снимается однородно во всех точках периметра, и поскольку, если быть точными, внешняя цепь тоже может быть построена совершенно симметричной относительно поля магнита, никакой реакции не может возникнуть.
Это верно однако только при слабо возбужденных магнитах, потому что при более или менее интенсивных магнитах оба намагничивания под прямыми углами друг к другу по-видимому взаимодействуют друг с другом.
И по одной только вышеуказанной причине получается, что выход такой машины на единицу веса должен быть больше, чем у любой другой машины, в которой ток якоря стремится размагнитить поле. Выдающийся выход униполярного динамо Форбса и опыт автора подтверждают эту точку зрения.
Опять же, поражает легкость, с которой делается так, чтобы эта машина возбуждала себя, но это может объясняться - помимо отсутствия реакции якоря - совершенной гладкостью тока и тем, что самоиндукция здесь не существует.
Если полюса не покрывают диск полностью с обеих сторон, то конечно же, если диск не разделен должным образом на части, такая машина будет очень неэффективной.
И вновь в этом случае есть моменты, которые стоит отметить.
Если диск вращается, а ток поля прерывается, то ток через якорь будет продолжать течь, и полевые магниты будут терять свою силу сравнительно медленно.
Причина этого станет сразу ясна, когда мы разберемся в направлении токов, идущих в диске.
В соответствии со схемой на Рис.1, d это диск со скользящими контактами ВВ1 на оси и периметре. N и S - это два полюса магнита. Если полюс N находится наверху, как на схеме, то

диск будет расположен в плоскости бумаги, и вращение будет идти в направлении стрелки D, поскольку установившийся в диске ток будет течь из центра к периметру, как показано стрелкой А.
Поскольку магнитное действие более или менее ограничено пространством между полюсами N и S, остальные части диска можно считать неактивными. Установившийся ток будет, таким образом, проходить через внешнюю цепь F, но будет замыкаться через сам диск, и вообще говоря, если расположение будет некоторым образом похоже изображенному на схеме, намного большая часть сгенерированного тока не будет проявляться вовне, поскольку цепь F практически замкнута накоротко через неактивные части диска.
Направление результирующих токов в диске можно положить совпадающим с изображенными пунктирными линиями и стрелками т и n; и направление тока возбуждающего поля- как изображено стрелками a b c d.
Если рассмотреть рисунок, то видно, что одна или две ветви завихряющегося тока, то есть А В' т В, будут стремиться размагничивать поле, тогда как остальные ветви, то есть А В1 n В, будут оказывать противоположное воздействие.
Таким образом, ветвь А В' m В, то есть так, которая начинает входить в поле, будет отталкивать его линии, а ветвь А В' n В, то есть та, которая выходит из поля, будет собирать линии силы на себя.
Вследствие этого будет существовать постоянна тенденция к уменьшению течения тока по пути А В' m В, тогда как на пути А В' n В такого противодействия не будет, и в влияние второй ветви или пути будет более или менее перевешивать влияние первой.
Совокупный эффект токов в обеих ветвях можно представить как эффект одного тока в направлении возбуждающего поля.
Другими словами, завихряющиеся токи, циркулирующие в диске, будут возбуждать поле магнита.
Этот результат прямо противоположен тому, который мы могли бы сначала предположить, потому что мы естественно могли бы ожидать, что результирующий эффект токов якоря будет противоположным эффекту от токов поля, как обычно бывает, когда первичный и вторичный проводники находятся друг с другом в индуктивной связи.
Но следует помнить, что это проистекает из конкретного расположения в данном случае, а именно, когда ток может течь по двум путям, и он выбирает тот, где меньше противодействие его течению.
Из этого мы видим, что завихряющиеся токи в диске будут продолжать течь, и поле магнита будет терять свою силу сравнительно медленно и может даже определенную силу сохранять, пока продолжается вращение диска.
Конечно, результат будет во многом зависеть от сопротивления и геометрических размеров пути результирующего завихряющегося тока, а также от скорости вращения; именно эти факторы определяют торможение этого тока и его положение относительно поля.

При определенной скорости будет наблюдаться максимальное возбуждающее воздействие; при более высоких скоростях оно будет постепенно спадать до нуля и наконец развернется, то есть результирующий эффект завихряющихся токов будет ослаблять поле.
Эту реакцию лучше всего можно продемонстрировать экспериментально, создав поля N S и N'S1 легко движущиеся по оси, концентричной с осью диска.
Если последний будет как и раньше вращаться в направлении стрелки D , то поле будет увлекаться в том же направлении с вращающим моментом, который вплоть до определенной точки будет увеличиваться со скоростью вращения, потом спадать, и, пройдя через ноль, станет наконец отрицательным.
То есть, поле начнет вращаться противоположно диску. В экспериментах с моторами переменного тока, где поле смещается токами с различающейся фазой, этот интересных эффект тоже наблюдался. При очень низких скоростях вращения поля мотор демонстрировал вращающий момент в 900 фунтов и более, будучи измеренный на шкиве в 12 дюймов диаметром.
Когда скорость вращения полюсов возрастала, вращающий момент снижался, становясь наконец нулевым, потом становился отрицательным, и тогда якорь начинал вращаться противоположно полю.
Возвращаясь к нашей основной теме, предположим, что условия таковы, что завихряющиеся токи, генерируемые вращением диска, усиливают поле, и предположим, что последнее постепенно удаляется, при этом вращение диска поддерживается с возрастающей скоростью.
Ток, после того как он потек, может оказаться способен поддерживать себя сам и даже возрастать по своей силе, и тогда мы получим случай "аккумулятора тока" Сэра Вильяма Томпсона.
Но как видно из вышеприведенного рассмотрения, для успеха эксперимента важно использовать неразделенный диск, потому что если будет радиальное разделение, то не смогут образовываться завихряющиеся токи, и самовозбуждение прекратится.

Если бы применялся такой радиально разделенный диск, то нужно было бы соединить спицы или им подобные части проводящим ободом или любым другим подходящим образом, чтобы образовалась симметричная система замкнутых цепей.
Действие завихряющихся токов можно применить для возбуждения машины любой конструкции. Например, на Рис.2 и 3 показаны устройства, при которых можем возбуждаться машина с дисковым якорем.
Здесь некоторое число магнитов, N S, N S, располагается радиально с каждой стороны металлического диска D, несущего на своем ободе множество изолированных катушек, С С. Магниты образуют два отдельных поля, внутреннее и внешнее, диск вращается в поле, ближайшем к оси, а катушки- в поле, дальнем от нее. Допустим, магниты слабо возбуждены в начале.
Их может усилить воздействие завихряющихся токов в диске может их усилить, чтобы создать более сильное поле для периферийных катушек.
Хотя несомненно, что при соответствующих условиях машина может возбуждаться таким или подобным ему образом, и этому утверждению есть достаточное количество экспериментальных доказательств, такой способ возбуждения был бы неэкономичным.
Но такое униполярное динамо или мотор, как показано на Рис.1, можно эффективно возбуждать просто нужным образом разделив диск или цилиндр, в котором идут токи, и вполне можно избавиться от обычно используемых катушек возбуждения.
Такая схема приведена на Рис.4. Диск или цилиндр D вращается между двух полюсов N и S магнита, который полностью покрывает обе его стороны, - контуры диска и полюсов изображены окружностями d и d' соответственно, верхний полюс для ясности не нарисован.

Сердечники магнита предполагаются полыми, чтобы через них проходила ось С.
Если непомеченный полюс будет находиться снизу, и диск будет вращаться по часовой стрелке, то токи, как и до этого, будут течь из центра к краю, и их можно снимать скользящими контактами, В и В, расположенными соответственно на оси и на краю.
В такой компоновке ток, текущий через диск и внешнюю цепь, не будет оказывать заметного влияния на возбуждающий магнит.
Но давайте предположим, что диск подразделен спирально, как показан сплошными или пунктирными линиями на Рис.4. Разница потенциалов между точкой на оси и точкой на краю будет оставаться неизменной, как по знаку, так и по величине. Единственная разница будет в том, что вырастет сопротивление диска, и в том, что будет большее падение потенциала от точки на оси до точки на краю, когда тот же ток будет проходить через внешнюю цепь.
Но поскольку ток будет вынужден следовать разделяющим линиями, мы видим, что он будет стремиться либо возбуждать, либо развозбуждать поле, и это будет зависеть, при прочих равных условиях, от направления линий разделения.
Если разделение будет сделано по сплошным линиям на Рис.4, то очевидно, если ток течет в том же направлении, что и раньше, то есть от центра к краю, его влияние будет усиливать возбуждающий магнит.
Тогда как если разделение будет сделано по пунктирным линиям, то генерируемый ток будет стремиться ослабить магнит. В первом случае машина будет способна возбуждать сама себя, когда диск вращается в направлении стрелки D; в последнем случае направлением вращение должно быть изменено на обратное.
Два таких диска можно скомбинировать, как показано, причем два диска будут вращаться в противоположных полях и в одном и том же или в противоположных направлениях.

Такое подразделение можно, конечно, сделать и в такой машине, где вместо диска вращается цилиндр.
В таких униполярных машинах можно, как описано, убрать обычные катушки возбуждения и полюса, и машина будет состоять только из цилиндра или двух дисков, заключенных внутри металлической отливки.
Вместо спирального разделения диска или цилиндра, как это показано на Рис.4, более удобно поместить один или два витка между диском и контактным кольцом на краю, как показано на Рис.5.
Таким способом может, например, возбуждаться динамо Форбса. По опыту автора было обнаружено, что вместо снятия тока как обычно скользящими контактами с двух таких дисков лучше использовать проводящую ленту.
В этом случае диски снабжаются большими фланцами, дающими очень большую поверхность контакта.
Ленту следует делать так, чтобы она удерживалась на фланцах давлением контактных пружин, чтобы компенсировалось растяжение.
Два года назад автор построил несколько машин с ленточными контактами, и они удовлетворительно работали. Но из-за нехватки времени работа в этом направлении была временно приостановлена.
Ряд особенностей, о которых написано выше, также были использованы автором в связи с некоторыми видами моторов переменного тока.


Статья 6: О рентгеновских лучах (El. Rev. March. 11, 1896).

Невозможно смотреть на эту небольшую грушевидную лампу Крукса бе з чувства, которое сродни благоговейному трепету, если вспомнить все то, что она сделала для научного прогресса: во-первых, полученные ее создателем впечатляющие результаты, во-вторых, блистательная работа Ленарда, и, наконец, великолепные достижения Рентгена.
Возможно, в ней все еще находится безмятежный Асмодей, которого волею судьбы освободит из тесной темницы какой- нибудь удачливый ученый. Временами и мне чудился нашептывающий голос, и я проводил напряженные поиски среди пылью покрытых ламп и бутылей.
Боюсь, мое воображение обмануло меня, но мои запыленные лампы все еще здесь, и я до сих пор с надеждой прислушиваюсь.
После повторения превосходных экспериментов Профессора Рентгена я направил свои усилия по двум направлениям: на исследование природы излучений и на совершенствование средств их получения.
Ниже привожу краткое и, надеюсь, полезное изложение методов, использованных при работе по этим направлениям, и достигнутых по ним наиболее значимых результатов.
Чтобы достичь наиболее сильных эффектов, необходимо, в первую очередь, учитывать, что, какова бы ни была их природа, они непременно будут зависеть от интенсивности катодных потоков.
А так как катодные потоки, в свою очередь, зависят от величины потенциала, то требуется наивысшее из возможных электрическое напряжение.

Для получения высоких потенциалов можно воспользоваться либо обычной индукционной катушкой, либо электростатической машиной, либо катушкой разряда с пробоем.
У меня такое впечатление, что большинство результатов европейских исследователей получены с помощью электростатической машины или катушки Румкорфа.
Но так как эти приборы вырабатывают относительно низкий потенциал, то естественен выбор катушки с пробойным разрядом как самого эффективного устройства.
Ведь у нее практически нет ограничений по длине искры, и единственное требование— это наличие у экспериментатора, как я уже отмечал в предыдущих статьях по этому вопросу, определенных знаний и опыта в настройке цепей, в особенности в плане резонанса.
После того, как экспериментатор сконструирует катушку пробоя, подходящую для источника постоянного или переменного тока, он приступает к выбору лампы.
Ясно, что, если в лампу поместить два электрода либо использовать один внутренний электрод, а второй наружный, то потенциал ограничивается, так как присутствие не только анода, но вообще любого проводящего объекта обладает эффектом ослабления реального потенциала на катоде.
Таким образом, для достижения намеченного результата приходится остановиться на лампе с одним электродом, а второй относить как можно дальше. Очевидно, что для получения наивысшей скорости катодных потоков следует использовать внутренний электрод, т. к. лампы без внутренних электродов намного менее эффективны для этой конкретной цели из-за потерь на стекле.
Видимо, бытует заблуждение относительно концентрации лучей вогнутыми электродами.
Если это вообще как-то влияет, то это скорее недостаток.
Для лампы есть определенная специфика в конструкциях катушки пробоя, цепей, конденсаторов и статических экранов, подробные описания которых я уже приводил ранее.

После выбора индукционной катушки и типа лампы следующая по важности задача— вакуум.
На сей счет могу обнародовать факт, с которым давно знаком, и благодаря которому добился преимущества при изготовлении вакуумных рубашек и всевозможных ламп накаливания, и который — как я впоследствии обнаружил, является очень важным, если не сказать ключевым, для получения контрастных теневых рентгеновских изображений.
Я имею в виду метод разрежения газов электрическими устройствами до такой степени, которая лежит далеко за возможными пределами механических установок.
Хотя дающие довольно высокий потенциал электростатическая машина, как и обычная индукционная катушка, позволяют добиться подобного результата, я обнаружил, что наиболее подходящее и быстродействующее устройство — это катушка пробоя.
Лучше всего делать так: Сначала посредством обычного вакуумного насоса откачиваем лампу до сравнительно высокого вакуума, хотя из опыта знаю, что это не абсолютно обязательно, поскольку я обнаружил возможность добиться разрежения начиная с низкого давления.
После отключения от насоса лампу подсоединяют к клемме катушки пробоя, желательно с высокой частотой колебаний, и, как правило, наблюдаются следующие явления.
Сначала по лампе расползается молочно-белое свечение, либо, если она была откачана до высокой степени разрежения, стекло какое-то мгновение фосфоресцирует.

В любом случае фосфоресценция обычно быстро убывает, а вокруг электрода появляется белое свечение, после чего на некотором расстоянии от электрода образуется темное пространство.
Вскоре свет принимает красноватый оттенок, и клемма очень сильно разогревается. Однако, подобный нагрев наблюдается лишь в случае мощных устройств.
На этом этапе необходимо внимательно следить за лампой и регулировать потенциал, так как возможно быстрое выгорание электрода.
Спустя некоторое время красноватый свет тускнеет, потоки вновь становятся белыми, затем заметно ослабевают, колеблясь вокруг электрода, пока не исчезают окончательно.
Тем временем стекло фосфоресцирует все сильнее, а пятно в месте соударения потока со стенкой становится очень горячим.
Затем исчезает фосфоресценция вокруг электрода, и он охлаждается до такой степени, что на ощупь стекло вблизи него может быть холодным как лед. Необходимая степень разрежения газа в лампе получена.
Чередуя нагрев и охлаждение и используя небольшой электрод, процесс можно ускорить. Следует добавить, что таким способом можно тренировать и лампы с наружными электродами.
Интересно отметить, что при определенных условиях, которые я сейчас изучаю более тщательно, электрическими средствами давление газа в сосуде можно повышать.

Я полагаю, неизбежное распыление электрода связано с заметным понижением температуры.
С того момента, когда электрод становится холодным, в трубке устанавливается очень хороший режим для получения рентгеновских теневых изображений. Когда электрод такой же горячий, как стекло, или еще горячее его, это верный признак недостаточно высокого вакуума или того, что электрод слишком мал.
Для высокоэффективной работы нужно, чтобы внутренняя поверхность стенки, где проходит катодный поток, выглядела так, как будто стекло находится в расплавленном состоянии.
По моим данным для охлаждения лучше всего применять сильные струи холодного воздуха.
Используя их, можно успешно работать с очень тонкостенной лампой, которая практически не препятствует прохождению лучей.
Замечу, что экспериментатору не следует отказываться от применения стеклянной лампы, так как на мой взгляд непроницаемость стекла, как и прозрачность алюминия, отчасти преувеличены, поскольку мною обнаружено, что очень тонкий лист алюминия отбрасывает заметную тень, и напротив, через толстую стеклянную пластину я получил изображения.
Ценность описанного выше метода не только в получении высокого вакуума, но, что еще важнее, еще и в том, что наблюдаемые явления проливают свет на полученные Ленардом и Рентгеном результаты.

Хотя явление разрежения при отмеченных выше условиях допускает различные толкования, основной интерес сфокусирован на одном из них, которого придерживаюсь и я, а именно, на том, что частицы действительно выбрасываются через стенки лампы.
По моим последним наблюдениям выброс частиц начинает должным образом воздействовать на чувствительную пластину только с момента, когда разрежение становится значительным, а эффекты тем сильнее, чем быстрее процесс разрежения, даже несмотря на возможно не особенно яркую фосфоресценцию.
Отсюда вытекает тесная связь двух эффектов, и я все сильнее склоняюсь к мысли, что, по-видимому, мы имеем дело с потоком материальных частиц, которые с большой скоростью соударяются с чувствительной пластиной.
Исходя из проведенной Лордом Кельвином оценки скорости падающих частиц в лампе Крукса, легко достичь— при использовании очень высоких потенциалов — скоростей в сотни километров в секунду.
И вновь возникает давнишний вопрос: происходит ли через стеклянные или алюминиевые стенки выброс частиц, которые вылетают из электрода или вообще из заряженной поверхности, включая и случай наружного электрода, или же эти частицы просто ударяются во внутреннюю поверхность и приводят к вылету частиц с внешней стороны стенки, воздействуя на них чисто механическим образом, по аналогии с ударом по расположенным в ряд бильярдным шарам? До сих пор большинство явлений указывало на то, что они выбрасываются через стенку лампы, из какого бы материала она ни была сделана, и теперь я в ищу еще более убедительное доказательство в данном направлении.

Возможно не всем известно, что даже обычный стример, резко и под большим напряжением вырываясь из клеммы катушки пробоя, проходит через толстую стеклянную пластину, как будто ее и нет.
Бесспорно, что подобные катушки позволяют получать напряжение, при котором частицы вылетают по прямым линиям даже при атмосферном давлении.
Мною уже получены отчетливые отпечатки в обычной воздушной атмосфере, и не с помощью стримеров, как делали некоторые экспериментаторы, применявшие электростатические машины или индукционные катушки, а реальным проецированием, причем тщательное экранирование статического электричества абсолютно предотвращало образование стримеров.

Похоже, что у рентгеновских лучей есть любопытная особенность — независимость от частоты, начиная от низкой и до наивысшей, какую только можно достичь, качества получаемых эффектов, за исключением их усиления с ростом частоты, что вполне вероятно вследствие того, что в этом случае выше и максимальное напряжение на катоде.
Это возможно лишь при допущении, что эффекты на чувствительной пластине вызваны либо падающими частицами, либо колебаниями, частота которых лежит далеко за пределами той, которую мы способны получить с помощью разрядов конденсатора.
Сильно возбужденная лампа окружена облаком фиолетового света, которое простирается более, чем на фут вокруг нее, но вне этого видимого явления отсутствует положительное свидетельство наличия волн, подобных световым. С другой стороны, некая связь непроницаемости с плотностью вещества — сильный аргумент в пользу материальных потоков.
То же самое можно сказать и об эффекте, открытом Профессором Дж.Дж.Томсоном.
Остается надеяться, что вскоре все сомнения будут рассеяны.
Прогнозируя создание пластин, особо чувствительных к механическим ударным воздействиям, можно ожидать, что появится ценное свидетельство природы данного излучения и будет усовершенствовано получение сильных ярких отпечатков.
Подходящие химикаты для этого есть, и развитие в этом направлении может привести к отказу от существующих пластин.
Кроме того, если мы все-таки имеем дело с потоками материальных частиц, то, по-видимому, возможно проецировать на пластину подходящее вещество, дабы обеспечить наилучшее химическое воздействие.

С помощью описанных мною устройств получены чудесные отпечатки на пластине.
Возможно, идея усиления эффектов предстанет в более выигрышном свете, если упомянуть, что легко будет получать теневые изображения при относительно коротких экспозициях на расстоянии многих футов, а на небольших расстояниях и при тонких объектах можно работать с экспозициями в несколько секунд.
Приложенный оттиск представляет собой теневое изображение медной проволоки, спроецированное на чувствительную пластину через деревянную крышку с расстояния в 11 футов.
Это первое теневое изображение, полученное в лаборатории с помощью моего усовершенствованного устройства.
Подобный отпечаток с расстояния около четырех футов был получен и сквозь тело экспериментатора, и через пластину стекла толщиной около трех шестнадцатых дюйма, и сквозь слой дерева почти в два дюйма.
Однако, замечу, что при получении таких отпечатков мое устройство работало в чрезвычайно неблагоприятном режиме, который допускает настолько существенные улучшения, что я надеюсь усилить эффекты во много раз.
Строение костей птиц, кроликов и т.п. представлено в мельчайших деталях, отчетливо видна даже полость костей.
На пластине с изображением кролика после часовой экспозиции видны не только все детали скелета, но и отчетливый контур брюшной полости и расположение легких, мех и многие другие особенности.
На оттисках даже крупных птиц довольно ясно видны перья. При экспозициях от четверти до одного часа получены четкие теневые изображения костей конечностей человека, а на некоторых пластинах такое количество деталей, что трудно поверить, что мы имеем дело лишь с теневыми изображениями.
К примеру, картинка с обутой ступней — видны каждая складка кожаного ботинка, брюк, чулка и т.д. и при этом резко выделяются мышечная ткань и кости.
Сквозь тело экспериментатора быстро получаются теневые изображения небольших пуговиц и подобных предметов, а при экспозиции от одного до полутора часов— как видно на приведенном оттиске— четко проявляются ребра, плечевые кости и кости предплечья.
Теперь уже без сомнения продемонстрировано, что в любой части тела можно безошибочно обнаруживать небольшие металлические предметы, а также костные или известковые [подагрические] отложения.

При экспозиции от 20 до 40 минут легко получается контур черепа. В одном случае 40- минутная экспозиция четко проявила не только контур, но и глазную впадину, кость подбородка, скуловую и носовую кости, нижнюю челюсть и связки с верхней челюстью, позвоночный столб и связки с черепом, мышечную ткань и даже волосы. Странные эффекты отмечены при экспозиции головы мощным излучением.
Например, я обнаружил, что клонит ко сну, а время, как показалось, пролетает быстро.
Наблюдается общее успокоительное воздействие, и у меня было ощущение тепла в верхней части головы. Помощник независимо подтвердил сонливость и быстрое течение времени. Если эти примечательные эффекты будут подтверждены людьми с более острой наблюдательностью, я еще более твердо уверую в существование материальных потоков, пронизывающих череп.
Тем самым окажется возможным направлять надлежащие химикалии в любую часть тела с помощью этих необыкновенных устройств. Рентген скромно представил свои результаты, предостерегая от излишне больших надежд.
К счастью, его опасения оказались беспочвенны, т.к. применение его открытия имеет широкие возможности, несмотря на то, что судя по всему нам предстоит иметь дело с простыми теневыми проекциями.
Я счастлив, что внес вклад в развитие того великого творения, которое им создано.

К ВОПРОСУ О РЕНТГЕНОВСКИХ ЛУЧАХ (2)
самые последние результаты

Редактору журнала Electrical Review

Позвольте заметить, что слегка удивлен, прочитав в Вашем журнале от 11 марта о том видном положении, которое по Вашему мнению гармонирует с моими юностью и талантом, в то время как скромно оставлены в тени представленные на рис. 1 ребра и прочие частности, которые я описал отчетливо видимыми, судя по сопровождающему мое сообщение оттиску.
К сожалению, мною обнаружена и ошибка в одной из подписей под иллюстрацией, более того, вынужден признать, что она проистекает из моего собственного текста.
Я имею в виду седьмую строку в третьей колонке на странице 135: "Подобный отпечаток с расстояния около четырех футов был получен и сквозь тело экспериментатора, ..."
Упомянутый здесь отпечаток аналогичен показанному на рис.2, а теневое изображение на рис.1 получено с расстояния 18 дюймов. Это замечание сделано только лишь во имя точности моего сообщения, но поскольку затронута истинность самого факта получения такого теневого изображения при данном расстоянии, Вашу подпись можно оставить без изменения, так как и с расстояния в 40 футов я получаю контрастные теневые изображения.
Повторяю, 40 и даже более футов. Но и это не все. Воздействия на пленку настолько сильные, что необходимо принимать меры, дабы при длительных экспозициях рассеянными лучами защитить от порчи пластины в фотографическом кабинете, расположенном этажом выше, на расстоянии по меньшей мере 60 футов.
Хотя в процессе исследований мною выполнено множество казавшихся экстраординарными экспериментов, и неожиданные проявления неведомого крайне поражают меня, но еще более удивительно, что даже теперь мне видится возможность — если не сказать о моей уверенности в этом, по крайней мере десятикратного усиления эффектов с помощью моей аппаратуры! И что можно ожидать тогда?



Очевидно, что мы будем иметь дело с излучением невиданной мощности, и все интереснее и важнее становится исследование его природы.
Вот непредвиденный результат работы, которая — хоть и удивительна сама по себе, казалась незначительной и совершенно неспособной к такому распространению, и которая являет убедительный пример плодотворности оригинального открытия.
Подобные воздействия на чувствительную пластину на таком огромном расстоянии я отношу к применению лампы с одним контактам, которая может работать практически при любом потенциале и позволяет получать огромные скорости падающих частиц.
Очевидно также, что при такой лампе воздействие на флуоресцентный экран пропорционально сильнее, чем при использовании трубки обычного вида.
И у меня уже достаточно данных, которые вселяют уверенность в том, что в этом направлении нас ждут удивительные события.
Я считаю, что открытие Рентгена, позволяющее нам с помощью флуоресцентного экрана видеть сквозь непрозрачную субстанцию, даже превосходнее записи на пластину.
После моего предыдущего сообщения в Вашем журнале мне удалось значительно продвинуться вперед, и сейчас я могу представить еще один важный результат.
Недавно с помощью лишь только отраженных лучей мною получены теневые изображения, и это вне всякого сомнения показывает, что рентгеновские лучи обладают этим свойством. Опишу один из экспериментов.
Один из концов толстой медной трубки длиной около фута плотно закрывали кассетой, в которой находилась чувствительная пластина, как обычно защищенная матерчатым чехлом.

Рядом с открытым концом трубки поместили толстую стеклянную пластину под углом 45 градусов к оси трубки.
На расстоянии примерно в восемь дюймов над стеклянной пластиной подвесили лампу с одним контактом так, чтобы пучок лучей падал на пластину под углом в 45 градусов, а предполагаемые отраженные лучи проходили вдоль оси медной трубки.
При 45-ти минутной экспозиции получалось четкое и контрастное теневое изображение металлического объекта.
Изображение давали отраженные лучи, так как абсолютно исключалось прямое воздействие.
Потому что было показано, что даже при самых жестких испытаниях, когда воздействия были намного сильнее, через толщу меди, равную толщине стенки трубки, на пленке невозможно было получить отпечаток.
Путем сравнения силы воздействия с эквивалентным эффектом за счет прямых лучей я обнаружил, что в данном эксперименте от стеклянной пластины отражались примерно два процента прямых лучей. Надеюсь, что вскоре смогу представить более подробный отчет по этой и другим темам.
Пытаясь внести скромный вклад в познание открытых Рентгеном явлений, нахожу все больше доказательств в пользу теории перемещения материальных частиц.
Однако у меня нет намерения отстаивать сейчас точку зрения, что подобный факт имеет отношение к теории света, я просто пытаюсь установить сам факт существования таких материальных потоков, коль дело касается этих отдельных эффектов.
У меня уже есть огромное количество указаний на то, что бомбардировка происходит вне лампы, и я готовлю решающие испытания, которые, надеюсь, приведут к успеху.

Расчетные скорости полностью учитывают воздействия при расстояниях от лампы до 100 футов, а то, что выброс происходит через стекло, представляется очевидным из процесса разрежения, который описан мною в предыдущем сообщении. Показательный в этом отношении эксперимент, о котором я собираюсь упомянуть, заключается в следующем: Если должным образом откачанную лампу с одним электродом подсоединить к клемме катушки пробоя, будут наблюдаться небольшие стримеры, прорывающиеся через стеклянные стенки.
Обычно, подобный стример пробивается через изолятор и пробивает! лампу, что влечет ухудшение вакуума; но, если изолятор поместить выше клеммы, или предпринять другие меры, которые бы препятствовали прохождению стримера через стекло в этом месте, то зачастую стример прорывается через боковую стенку лампы, образуя малюсенькое отверстие.
Удивительно то, что несмотря на связь с наружной атмосферой, воздух не может проникнуть в лампу, пока отверстие очень мало.
В месте возникновения пробоя стекло может быть настолько сильно разогрето, что становится мягким; но оно не разрушается, скорее выпучивается, указывая на то, что внутреннее давление превышает атмосферное.
Часто приходилось наблюдать, как стекло выпучивается, а отверстие, через которое прорывается стример, становится столь большим, что заметно невооруженным глазом.
По мере вытеснения из лампы материи улучшается разрежение, а стример становится все слабее, после чего стекло вновь смыкается, герметично затягивая отверстие.
Тем не менее, процесс разрежения продолжается, причем на разогретом месте все еще видны стримеры до тех пор, пока не настанет высшая степень разрежения, после чего они могут исчезнуть.
Вот, следовательно, положительное свидетельство вытеснения материи через стенки стекла.
При работе с сильно деформированными лампами мои глаза часто испытывали внезапный и иногда болезненный шок.
Подобный шок может возникать столь часто, что глаз воспаляется, и не будет перестраховкой, если воздержаться от слишком пристального наблюдения за лампой.
В таком шоке мне видится еще одно свидетельство выброса из лампы более крупных частиц.
Electrical Review, 18 Марта 1896 г.


Статья 7: Об отраженных рентгеновских лучах. (El. Rev. April 1, 1896).

В предыдущих сообщениях по открытым Рентгеном эффектам я ограничился лишь кратким описанием наиболее значительных результатов, полученных в ходе исследований.
Честно говоря, я первый раз осмелился высказаться после некоторого колебания и закономерной задержки, и только после того, как убедился в необходимости приведенной мною информации; поскольку, подобно остальным, не вполне мог избавиться от ощущения, которое неизбежно испытывает всякий, вторгаясь на чужую территорию.
Естественно, первооткрыватель и сам бы докопался в свое время до большинства фактов, и будет не лишней учтивая сдержанность при объявлении результатов со стороны его коллег.
Сколь многие преступали приличия по отношению ко мне, заявляя о своих достижениях как раз в тот момент, когда я и сам был вполне готов это сделать!
Но настолько прекрасными, увлекательными и перспективными явились открытия Рентгена, которые стоят в одном ряду с созданием телескопа и микроскопа, его видение сквозь толщу непроницаемой субстанции, полученные им отпечатки на чувствительной пластине доселе невидимых объектов, что отброшена всякая сдержанность, и каждый предается удовольствию размышления и эксперимента.
Вот бы каждая новая и достойная мысль находила такой отклик! Тогда бы один единственный год сравнялся со столетием прогресса. Жизнь в такой эпохе была бы наслаждением, но я бы не пожелал быть первооткрывателем.

Среди фактов, которые я имел честь довести до сведения, есть один, представляющий большой научный интерес и немалое практическое значение.
Я имею в виду вкратце уже описанною мною демонстрацию отражения.
Поскольку в процессе работы с вакуумными лампами и трубками мне часто приходилось получать результаты, которые, насколько я мог судить, невозможно убедительно объяснить никакой теорией колебаний, поэтому я приступил к исследованиям, хоть и неохотно, но ожидая обнаружить, что причиной полученных эффектов является поток материальных частиц.
У меня было много свидетельств существования таких потоков. Об одном из них я упоминал при описании электрического способа откачивания трубки.
Я обнаружил, что подобная откачка происходит намного быстрее, если стекло по сравнению с толстостенной трубкой очень тонкое полагаю, из-за лучшего прохождения ионов.
При очень тонком стекле достаточно нескольких минут откачки, тогда как в случае толстого стекла или очень большого электрода зачастую требуется час и более.
В соответствии с этой идеей я, стремясь добиться наиболее эффективной работы, выбрал прибор и обнаружил, что с каждым шагом моя гипотеза все больше подтверждается, а моя уверенность растет.

Поток обладающих большой скоростью частиц непременно должен отражаться; и, полагая, что первоначальная идея верна, я был вполне подготовлен рано или поздно продемонстрировать это свойство.
Считая, что чем меньше угол падения, тем полнее отражение, я с самого начала исследований выбрал трубку, или лампу, b, формой, показанной на рис.1, сделанную из очень толстого стекла, причем ее выдували так, чтобы дно было как можно тоньше.
Преследовались две очевидные цели: ограничение излучения через боковые стенки и облегчение его прохождения через дно.
В верхней части, примерно в дюйме под узкой шейкой n, располагается единственный электрод е в форме диска, диаметр которого чуть меньше диаметра трубки.
Входной проводник с обернут длинной лентой w с тем, чтобы предотвратить растрескивание при образовании искр в точке входа проволоки в стекло.
По ряду причин полезно хорошенько обернуть шейку и прилегающую часть трубки, а на узкую шейку поместить уплотнение.
Иногда для подобных трубок с одним выводом я применял электростатический экран.
В данном примере в качестве экрана нанесена бронза s чуть выше алюминиевого электрода и почти до обертки провода, так что конец обертки всегда видно.
Либо внутри трубки, повыше электрода, размещают небольшую алюминиевую пластину, рис.2. Электростатический экран практически удваивает эффект, так как отсекает пространство над собой от любого воздействия.
Кроме того, если принять, что излучение в стороны ограничено очень толстым стеклом, и за счет отражения большая его часть поступает ко дну, как я тогда предполагал, то очевидно, такая трубка должна быть намного эффективнее обычных.
Действительно, быстро выяснилось, что по силе воздействия на чувствительную пластину трубка почти в четыре раза превосходила сферическую лампу с эквивалентной площадью воздействия.
Подобного рода трубка также хорошо подходит для работы с двумя контактами, когда наружный электрод е1 размещен так, как показано пунктирными линиями на рис.1.
Если стекло толстое, то поток достаточно параллельный и сфокусированный.
Помимо этого, если трубку сделать как можно длиннее, то можно будет использовать очень высокие потенциалы, работа с которыми при коротких трубках неосуществима.
Применение высоких потенциалов очень важно, так как позволяет значительно сократить время экспозиции и воздействовать на пластину с намного больших расстояний.
Я пытаюсь точнее определить связь потенциала с воздействием на чувствительную пластину.
По-моему, необходимо отметить, что следует использовать алюминиевый электрод, так как платиновый электрод, который до сих пор настойчиво применяют, дает худшие результаты, и трубка выходит из строя через сравнительно короткий период времени.
Возможно, некоторые экспериментаторы испытывают трудности в поддержании достаточно постоянного вакуума, причина которых в особом процессе абсорбции в трубке— на него ясно указывал в самом начале Крукс, и вследствие которого вакуум может возрастать при непрерывной работе.
Мною найден удобный способ предотвращения этого: Экран или алюминиевую пластину S, рис.2, размещают непосредственно над оберткой входного проводника C, но на некотором расстоянии от конца трубки.
Верное расстояние можно определить только опытным путем. Если оно выбрано правильно, то при работе трубки обертка W нагревается, и временами через нее проскакивают яркие искорки от провода с к алюминиевой пластине S.
Прохождение такой искры приводит к образованию газа, который слегка ухудшает вакуум.
Вот таким образом, с помощью небольшой уловки, можно постоянно поддерживать необходимый вакуум.
В трубке, показанной на рис.1, можно добиться такого же результата посредством обертки, которую продлевают настолько глубоко внутрь, что во время нормальной работы трубки обертка так разогревается, что высвобождаются газы до необходимого количества.
Для этой цели удобно, чтобы экран из бронзового покрытия S был нанесен и чуть ниже обертки, что дает возможность наблюдать за искрой.

Однако, есть много иных способов обойти эту трудность, которая может досаждать тем, кто работает с недостаточно совершенными устройствами.
Для обеспечения наилучшего режима работы экспериментатору следует обратить внимание на различные отмеченные мною прежде стадии, через которые проходит трубка в процессе откачки.
Во-первых, необходимо следить, что при наиболее заметном проявлении явлений Крукса из электрода вы- рывается красноватый стример, вначале почти полностью охватывающий электрод.
Вплоть до этого момента трубка практически не оказывает воздействия на чувствительную пластину, хотя стекло очень горячее в точке соударения.
Постепенно красноватый стример исчезает, и как раз незадолго до его исчезновения трубка начинает входить в близкий к рабочему режим, но все-таки воздействие на пластину слишком слабо.
Теперь появляется белый или даже синеватый стример, и спустя некоторое время стекло на дне трубки приобретает глянцевый блеск.
Нагрев все усиливается, по всей трубке идет предельно яркая фосфоресценция.
Можно посчитать, что трубка в таком состоянии готова к работе, но внешние проявления зачастую обманчивы, и прекрасная трубка так и не работает.

Даже при затухании белого или синего стримера и разогреве стекла на донышке почти до расплава эффект на пластине очень слабый.
Но на этой стадии внезапно на дне трубки появляется изменяющийся знак в виде звезды, как будто электрод источает капли жидкости.
С этого момента мощность трубки возрастает во много раз, и для получения наилучших результатов ее необходимо удерживать именно в этом режиме.
Могу, однако, отметить, что утверждения о том, что вакуум Крукса недостаточно высок для получения эффектов Рентгена, не совсем верны.
Ведь и явления Крукса также не получаются при определенной степени вакуума, но проявляются даже при плохом вакууме, но при достаточно высоком потенциале.
Это справедливо и для эффектов Рентгена. Естественно, для проверки необходимо предпринять меры к тому, чтобы не перегреть трубку при повышении потенциала.
Этого легко добиться, если при его увеличении уменьшить число импульсов или их длительность.
Для подобных экспериментов лучше с индукционной катушкой вместо вибрирующего прерывателя применять вращающийся коммутатор.
Изменение скорости коммутатора, а также регулировка длительности контакта, позволяют настраивать режим работы в соответствии со степенью вакуума и приложенного потенциала.

В рассматриваемых здесь экспериментах по отражению использован прибор, показанный на рис.2.
Он состоит из Т-образной камеры квадратного сечения. Стенки выполнены из свинца толщиной одна восьмая дюйма, который при условиях экспериментов оказался совершенно непроницаемым даже при длительных экспозициях лучей.
На верхнем торце прочно закреплена лампа b, вставленная в трубку t из толстого богемского стекла, конец которой несколько утоплен в свинцовую камеру.
Нижний торец камеры плотно закрыт кассетой Р1 для фотопластины, в кассете находится защищенная как обычно чувствительная пленка p1. И наконец боковой торец закрыт аналогичной кассетой Р с защищенной чувствительной пленкой р.
Для получения контрастных отображений полностью идентичные объекты о и о1 помещены в центре матерчатого чехла, защищающего чувствительные пластины.
В центре камеры имеется приспособление для вставки пластины r из материала, отражательную способность которого испытывают, а размеры камеры таковы, чтобы отраженные и прямые лучи проходили одинаковое расстояние, причем отражающая пластина находится под углом в 45 градусов по отношению как к падающим, так и к отраженным лучам.
Предпринимались меры к тому, чтобы полностью исключить возможность воздействия на пластину р любых лучей, кроме отраженных, а отражающая пластина r была так плотно пригнана повсюду к стенкам свинцовой камеры, что на пленку p1 не попадали никакие лучи, кроме проходящих через контрольную пластину.

В предыдущих экспериментах по отражению отмечены лишь эффекты от отраженных лучей, но в данном случае, по предложению профессора У.А. Энтони, мною предусмотрены описанные выше меры для одновременного контроля воздействия и тех прямых лучей, которые все-таки проходят через отражающую пластину.
Таким образом можно сравнивать величину проходящего и отраженного излучения.
Назначение стеклянной трубки которая окружает лампу b, обеспечение параллельного и более интенсивного потока.
Отпечатки для различных расстояний показали, что на значительной дистанции пучок лучей или поток частиц расходится незначительно.
Для понижения ошибки, которую неизбежно влекут слишком длительная экспозиция и очень небольшое расстояние, экспозицию сокращали до одного часа, а суммарное расстояние, которое лучи проходили до чувствительных пластин, составляло 20 дюймов, при этом расстояние от дна лампы до отражающей пластины равнялось 13 дюймам.
Необходимо отметить, что в процессе испытаний были предприняты все возможные меры предосторожности относительно чувствительных пластин: постоянство потенциала, неизменный режим ламп и поддержка одинаковых условий в целом.
Размер контролируемых пластин был одинаков, чтобы они входили в гнездо в свинцовой камере. Испытаны следующие проводники: латунь, инструментальная сталь, цинк, алюминий, медь, свинец, серебро, олово и никель, и изоляторы: флинтглас, эбонит и слюда.
Результаты сведены в следующую таблицу:

Как и в предыдущих экспериментах путем сравнения интенсивности отпечатка, полученного отраженными лучами, с эквивалентным отпечатком, полученным за счет прямой экспозиции от одной и той же лампы и при одинаковом расстоянии, т.е. путем расчета по времени экспозиции при допущении, что воздействие на пластину пропорционально времени, получены следующие приблизительные результаты:
Хотя эти числа— лишь грубое приближение, тем не менее, вполне вероятно, что они верны, поскольку речь идет об относительных величинах отпечатков, полученных отраженными лучами для различных тел.

Выстраивая металлы согласно этим величинам и на время отложив рассмотрение сплавов или веществ с примесями, получаем следующий ряд: цинк, свинец, олово, медь, серебро.
По-видимому, олово отражает совершенно также, как свинец, но допуская наличие ошибки в измерениях, можно предположить, что оно отражает хуже, а в таком случае мы находим, что этот ряд точно совпадает с Вольтовым рядом металлов в воздухе.
Если это окажется верным, то мы столкнемся с совершенно необычным фактом.
Почему, например, цинк— лучший отражатель среди проверенных металлов, и почему, одновременно, он один из лидеров в ряду Вольта?
Пока что не проверен магний. По правде говоря, меня несколько взволновали эти результаты.
Магний должен быть даже еще более хороший отражателем, чем цинк, а натрий — еще лучше магния.
Каким образом объяснить эту необычную взаимосвязь?
На сегодня мне видится единственно возможное объяснение: из лампы выходят потоки материи в некоем первичном состоянии, а отражение потоков зависит от какого-то фундаментального и электрического свойства металлов.
Вероятно, напрашивается предположение об однородной наэлектризованности потоков; т.е. по своей природе они должны быть или анодными, или катодными, но не смешанными.
С момента публикации, впервые, по-моему, во Франции, о том, что данные потоки анодные, я изучил этот вопрос и обнаружил, что не могу согласиться с такой точкой зрения.
Напротив, по-моему на пластину воздействуют и анодные, и катодные потоки, более того, я убедился в том, что фосфоресценция стекла не имеет ничего общего с фотографическими отпечатками.

Явное доказательство заключается в том, что подобные отпечатки получены с помощью алюминиевых баллонов в отсутствии фосфоресценции.
А что касается анодной или катодной природы, то простой факт получения отпечатков посредством светового разряда, возбуждаемого индукцией замкнутого баллона, где нет ни анода, ни катода, по-видимому, эффективно опровергает предположение об испускании потоков только с одного из электродов.
Вероятно, уместно указать на простой связанный с индукционной катушкой момент, который может привести экспериментатора к ошибке.
При подсоединении вакуумной трубки к выводам индукционной катушки обе клеммы подвергаются одинаковому воздействию, пока трубка плохо откачана.
При высоком разрежении оба электрода практически независимы, а так как они ведут себя как тела со значительной емкостью, то следствием этого является неуравновешенность катушки.
Если, например, катод очень большой, может значительно возрасти напряжение на аноде, и если анод делают, как часто бывает, маленьким, то плотность электрического тока может во много раз превышать таковую на катоде.
Отсюда очень сильный разогрев анода при, возможно, холодном катоде. Совершенно иное дело, если размеры обоих электродов в точности одинаковы. Но при описанных выше условиях более горячий анод испускает поток большей интенсивности, чем холодный катод, так как скорость частиц зависит и от плотности электрического тока, и от температуры.

Из предыдущих опытов вытекают также интересные результаты по непроницаемости. Например, латунная пластина толщиной одна шестнадцатая дюйма оказалась довольно прозрачной, тогда как пластины той же толщины из цинка и меди продемонстрировали полную непроницаемость.
Так как я изучил отражение и получил в этом направлении определенные результаты, то появилась возможность добиться более сильных эффектов за счет подходящих отражателей.
Эффект можно существенно усилить, если окружить лампу трубкой из очень толстого стекла.
Применение цинкового отражателя однажды дало примерно 40-процентное усиление полученного отпечатка.
Использованию надлежащих отражателей я отвожу большое практическое значение, потому что с их помощью можно задействовать любое количество ламп и тем самым получать необходимую интенсивность излучения.
В ходе исследований меня постигло разочарование: полный провал усилий по демонстрации преломления. Использовал линзы всех типов, проводил множество экспериментов, но не смог добиться положительного результата.


Статья 8: О рентгеновских излучениях. (El. Rev. April 8, 1896).

Обнаружив неожиданное поведение различных металлов при отражении рентгеновских лучей (см. Electrical Review за 1 Апреля 1896 г.), я попытался разобраться с некоторыми все еще сомнительными моментами.
Так как на этот раз казалось крайне необходимым установить точный порядок металлов относительно их отражательной способности, то, отложив определение величины эффектов на будущее, я несколько модифицировал прибор и методику, описанные в упомянутой работе.
Каждая отражательная пластина выполнена не как прежде из одного металла, а из двух, отражательные способности которых следовало сравнить.
Пластины из двух исследуемых металлов крепили на свинцовой пластине таким образом, что отражающую поверхность линия их соединения разделяла на две половины.
Кроме того, во избежание распространения и смешивания лучей, отражаемых от обеих половин, толстая свинцовая пластина, установленная посередине свинцовой камеры, разделяла ее на два отделения.
Были предприняты меры, чтобы по возможности была однородной плотность падающих на отражающие поверхности лучей, и с этой целью окружающая лампу стеклянная трубка была приподнята так, чтобы выставлялось лишь полусферическое дно лампы.
Лампу размещали как можно точнее по центру, чтобы в равной мере подвергать облучению обе половины отражающей пластины.

Так как в предыдущих опытах я по недосмотру не получил результат по железу, я путем сравнения с медью попытался выяснить его положение в ряду, использовав пластину из этих двух металлов.
Опыты показали, что железо отражает почти также как медь, но надежно определить этим методом, какой из металлов отражает лучше, было невозможно.
Далее, по той же методике я пробовал найти, что лучше отражает: олово или свинец.
Выполнил три опыта, и в каждом случае металлы вели себя почти одинаково, но кажется, олово чуть-чуть лучше.
И в конце мною были изучены сравнительные свойства магния и цинка. Судя по результатам, магний отражает несколько лучше.
В силу важности данного соотношения металлов я пока не удовлетворен используемой установкой и попытаюсь продумать прибор, который устранит все нынешние недостатки.
Обнаружил, что можно сократить время экспозиции до нескольких минут с помощью флуоресцентной бумаги.
В предыдущих сообщениях я лишь намекал о практической важности применения подходящих отражателей.
Вероятно, кто-то придет к заключению, что выигрыш, например, от цинкового отражателя будет мал, так как при условиях описанных раннее опытов цинк отражает только три процента падающих лучей.
Конечно, это ошибочный вывод. Прежде всего следует помнить, что в упомянутых прежде примерах угол падения составлял 45 градусов, и что при больших углах будет отражаться более значительная часть лучей.

Точный закон отражения еще надлежит определить. Теперь предположим, что теневое изображение объекта получают на расстоянии D.
Чтобы добиться контрастного теневого изображения, это расстояние должно быть не менее двух футов, а я прихожу к все большей и большей необходимости использовать еще большие расстояния.
Если ради простоты рассмотреть сферические лампу и электрод, то излучение будет однородным во все стороны, а любой элемент поверхности сферы радиусом D, очерченной вокруг электрода, примет равное количество лучей. Полная поверхность такой сферы равна 4 Пи D2 .
Объект, теневое изображение которого следует получить, может иметь небольшую площадь а, на которую из всех испускаемых лучей попадает лишь незначительная часть, определяемая соотношением (a / 44 Пи D2 ). В действительности нельзя допускать меньшее, чем (a / 44 Пи D2) , эффективное отношение.
Но даже в случае, если D очень большое, а объект, т.е. площадь (X, мал, отношение

(a / Пи D2 ) может быть столь незначительным, что посредством подходящего отражателя можно сконцентрировать на площади а такое количество лучей, которое в несколько раз превысит количество лучей, попадающих на нее без отражателя.
И это при том, что мы можем отражать лишь несколько процентов всех падающих лучей. В качестве доказательства эффективности такого отражателя представлен снимок плеча и ребер человека.
В эксперименте использовали воронкообразный цинковый отражатель высотой два фута с пятидюймовым отверстием в днище и 23-дюймовым в верхней части.
Полностью подобную ранее описанным трубку подвешивали в отражателе таким образом, что выше его находился лишь статический экран трубки.
Точное расстояние от электрода до чувствительной пластины составляло четыре с половиной фута. Расстояние от конца трубки до пластины— три с половиной фута.
Продолжительность экспозиции 40 минут. Все кости: плечо и ребра, были отчетливо видны на пластине, но мне трудно судить, насколько четко они отобразятся на оттиске в журнале.
С тем, чтобы лучше продемонстрировать достигнутый прогресс, я выбрал тот же объект, что и в первой по данному исследованию статье в Electrical Review.
Наилучшими показателями успеха в этом случае служат расстояние, увеличенное более, чем в два раза, и время экспозиции меньше получаса. Но основное значение отражателя в том, что он позволяет использовать много ламп, не ухудшая точность и четкость изображения, а также в концентрации большого количества излучения на очень маленькой площади.

С тех пор, как два профессора, Генри и Сальвони, предложили использовать фосфоресцирующие или флуоресцирующие вещества применительно к чувствительной пленке, я обнаружил, что сокращение времени экспозиции до нескольких минут или даже секунд — дело несложное.
По-видимому, внедренный недавно Эдисоном и выпускаемый господами Эйлсуэртом и Джексоном вольфрамат кальция — пока самое чувствительное вещество.
Мною получен и использован в ряде испытаний его образец. Он бесспорно флуоресцирует лучше, чем цианоплатинит бария, но из-за размера кристаллов и неизбежно неровного распределения на бумаге, он не оставляет четкого отпечатка.
Для использования применительно к чувствительным пленкам вольфрамат кальция следует размалывать до очень тонкого порошка, и каким-то образом добиваться его равномерного распределения.
Для получения достаточно четких контуров также необходимо крепко прижимать бумагу к пленке по всей пластине.
Видимо, флуоресценция этого вещества зависит от особого излучения, потому что испытания с несколькими лампами, которые прекрасно работали в иных обстоятельствах, не дали очень хорошего результата, а я едва не получил ложный отпечаток.

Однако, одна или две лампы воздействовали на него очень сильно. Отпечаток руки делали с расстояния около шести футов от лампы при экспозиции меньше минуты, но даже при этом пластина оказалась передержанной.
Затем с расстояния 12 футов от конца трубки при пятиминутной экспозиции был сделан отпечаток грудной клетки человека.
На проявленной пластине ребра были видны четко, но контуры были нерезкие.
Далее, при получении отпечатка грудной клетки помощника на расстоянии четырех футов от лампы была использована трубка с уже описанным цинковым отражателем.
При этом эксперименте лампа была излишне деформирована, и ее разорвало из-за большого внутреннего давления в месте пятна бомбардирующих потоков.
Такая авария часто случается при слишком сильно деформированных лампах, при этом внешними предвестниками ее являются возросшая активность газа в трубке, который выглядит как пар, и быстрый нагрев самой трубки.
По- видимому, вызывающий необычно большой рост внутреннего давления на стеклянную стенку процесс является следствием воздействия, противоположного тому, которое отмечали Крукс и Споттисвуд, и процесс этот очень быстрый.
По этой причине экспериментатору необходимо внимательно следить за подобными зловещими сигналами и незамедлительно понижать потенциал.

Вследствие безвременной кончины лампы в последнем описанном опыте экспозиция длилась лишь одну минуту.
Тем не менее, был получен очень контрастный отпечаток скелета грудной клетки, на котором видны правые и левые ребра и прочие подробности.
Но вновь по сравнению с обычным процессом без фосфоресцентного подсвечивающего устройства значительно менее резкими были контуры, хотя флуоресцентная бумага была крепко прижата к пленке.
Из предшествующего описания очевидно, что при использовании вышеупомянутых средств для сокращения времени экспозиции толщина объекта не имеет очень большого значения.
При наблюдении за воздействием на флуоресцентный экран из вольфрамата кальция мне пришла в голову еще более интересная мысль о качестве этого химиката.
Такого рода экрану вместе с бумажной камерой дали причудливое название "флюороскоп". На самом деле это криптоскоп Сальвиони без объектива, что большой недостаток.
Дабы оценить характеристики экрана, необходимо работать по ночам, когда спустя длительное время глаз привыкнет к темноте и приобретет способность замечать на экране слабые эффекты.
Однажды качество экрана было особенно замечательным. Его освещали с расстояния 20 футов, но даже с 40 футов я все еще мог различать тусклую тень, проходящую через поле зрения при движении руки перед прибором.
Наблюдая примерно с трех футов от лампы просвечивание тела помощника я мог легко различать позвоночный столб в верхней части тела, которая была прозрачнее.

В нижней части тела столб и остальное были практически неразличимы. Ребра были лишь едва видны.
Отчетливо заметны были кости шеи, и сквозь тело помощника можно было очень легко увидеть квадратную медную пластину, когда ее двигали вверх и вниз перед лампой.
При наблюдении сквозь голову видны были только контур черепа и подбородок, хотя поле зрения все еще было ярким.
Все-таки все выглядело расплывчатым. Это показывает, что усиление флуоресценции не очень-то много дает при осмотре внутренних частей тела.
Скорее решение этой задачи будет найдено после получения очень мощных излучений, способных давать более контрастные теневые изображения. Полагаю, что указал верный путь к достижению результата.
Хотя необходимо признать замечательный показатель экрана при использованных мною приспособлениях, тем не менее, я убедился в его ограниченном значении для исследования.
Кости конечностей различимы, но не так отчетливо, как на фотографическом отпечатке.
Однако, со временем с помощью сильного излучения и хороших отражателей подобные флуоресцентные экраны могут стать ценными инструментами для исследования.
Несколько недель назад, когда я наблюдал, как на значительном расстоянии от лампы вспыхивает небольшой экран из цианоплатинита бария, я сказал своим друзьям, что, по- видимому, посредством такого экрана можно будет наблюдать за движущимися по улице объектами. Теперь эта возможность кажется мне намного ближе, чем тогда.
Сорок футов — порядочная ширина для улицы, а на таком расстоянии от единственной лампы экран слабо светится.
Привожу эту странную мысль только в качестве иллюстрации, насколько научные разработки могут повлиять даже на наши нравы и привычки.

Возможно, вскоре каждый из нас настолько свыкнется с таким положением вещей, что не будет испытывать ни малейшего смущения, сознавая, что бестактные наблюдатели пристально рассматривают его скелет или иные особенности.
Флуоресцентные экраны помогают получить представление о рабочем режиме лампы.
С помощью подобного экрана, разместив между ним и лампой объектив и меняя фокусное расстояние, я надеялся найти подтверждение преломления.
К своему разочарованию, мне не удалось увидеть никаких его признаков, хотя теневое изображение объектива наблюдалось с 20 футов.
Также тщетным оказалось применение экрана с целью регистрации эффектов отражения и дифракции.



free counters

Яндекс.Метрика